首页 > 其他分享 >Wave Particles(波动粒子) - Cem Yuksel

Wave Particles(波动粒子) - Cem Yuksel

时间:2023-05-21 23:11:06浏览次数:64  
标签:interaction Yuksel Cem fluid simulation motion Wave boats wave

参考:http://www.cemyuksel.com/research/waveparticles/

This is captured from our real-time simulation, showing three boats in the open ocean. The dynamic surface waves generated due to boat motion are simulated using wave particles. In addition, boat motion is not scripted or animated, it is also simulated. The forward motion of the boats is induced by the fluid-object interaction forces acting on the rotating propellers of the boats and the boats turn due to the fluid-object interaction forces on the their rudders.

Abstract

We present a new method for the real-time simulation of fluid surface waves and their interactions with floating objects. The method is based on the new concept of wave particles, which offers a simple, fast, and unconditionally stable approach to wave simulation. We show how graphics hardware can be used to convert wave particles to a height field surface, which is warped horizontally to account for local wave-induced flow. The method is appropriate for most fluid simulation situations that do not involve significant global flow. It is demonstrated to work well in constrained areas, including wave reflections off of boundaries, and in unconstrained areas, such as an ocean surface. Interactions with floating objects are easily integrated by including wave forces on the objects and wave generation due to object motion. Theoretical foundations and implementation details are provided, and experiments demonstrate that we achieve plausible realism. Timing studies show that the method is scalable to allow simulation of wave interaction with several hundreds of objects at real-time rates.

 Wave particles generated by mouse click and drag.根据鼠标的点击和拖拽而产生的波动粒子

 Here is example from our real-time simulation, running at 170 fps on an NVIDIA GeForce 7900 GTX graphics card (released in 2006). The boat motion is induced by the fluid-object interaction forces acting on the rotating propeller, the boat body, and the joystick-controlled rudder.

 This scene has 1681 boats (295,856 faces), and the simulation runs with 4.8 fps on an NVIDIA GeForce 7900 GTX graphics card (released in 2006). Similar to the previous examples, motion of the boats is induced by fluid-object interaction forces acting on the rotating propellers and rudders. Click on the image to enlarge.

 

标签:interaction,Yuksel,Cem,fluid,simulation,motion,Wave,boats,wave
From: https://www.cnblogs.com/2008nmj/p/17419444.html

相关文章

  • Waves 14 Complete Mac (Waves混音效果全套插件)
    Waves14Complete是一款全功能的音频处理软件套装,包含超过140个插件,可用于各种音频处理和音乐制作任务。这个套装包含了多种不同类型的插件,包括均衡器、压缩器、混响、延迟、合成器、调制器等等。Waves14Complete还提供了许多专业级功能,如自适应限制、自动启动时间校准、360度......
  • Off-Policy Deep Reinforcement Learning without Exploration
    发表时间:2019(ICML2019)文章要点:这篇文章想说在offlineRL的setting下,由于外推误差(extrapolationerrors)的原因,标准的off-policy算法比如DQN,DDPG之类的,如果数据的分布和当前policy的分布差距很大的话,那就很难从data里学到好的policy。然后文章提出了batch-constrainedreinforceme......
  • MAY 2022-Composite Experience Replay-Based Deep Reinforcement Learning With Appl
    摘要:本文提出了一种基于深度强化学习(RL)的控制方法,以提高学习效率和效果来解决风电场控制问题。具体地,设计了一种新的复合体验重放(CER)策略,并将其嵌入到深度确定性策略梯度(DDPG)算法中。CER提供了一种新的采样方案,通过在奖励和时间差异(TD)误差之间进行权衡,可以深入挖掘存储变......
  • Jan 2023-Prioritizing Samples in Reinforcement Learning with Reducible Loss
    1Introduction本文建议根据样本的可学习性进行抽样,而不是从经验回放中随机抽样。如果有可能减少代理对该样本的损失,则认为该样本是可学习的。我们将可以减少样本损失的数量称为其可减少损失(ReLo)。这与Schaul等人[2016]的vanilla优先级不同,后者只是对具有高损失的样本给予高优......
  • DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correctio
    发表时间:2020(NeurIPS2020)文章要点:这篇文章想说,对于监督学习来说就算刚开始训的不准,后面的新数据也会给你正确的feedback,这样的话随着训练进行,总会修正之前的错误。但是对于像Q-learning这样的强化学习任务来说,不存在这样的feedback,因为更新是通过bootstrapping的方式更新的,......
  • wavefront propagation(波前传播)
    房间划分任务多次遇见wavefrontpropagation,波前传播算法可用于为二维图中未标记的点分配适当的标签。该算法背后的基本思想是从标记点开始,然后将它们的标签传播到相邻点,直到图中的所有点都被标记。以下是有关如何使用波前传播算法标记未标记点的分步指南:首先识别图中所有标记......
  • 解决 Docker 的 DeviceMapper 占用空间过大
    某虚拟机运行容器半年后,磁盘空间报警,使用率超过百分之九十。经查后发现为Docker的DeviceMapper占用空间过大。概述DeviceMapper为容器的镜像和运行过程的缓存存放目录,这并不是一个文件夹,而是一个虚拟块设备。解决先将当前运行的容器导出为镜像(若已经对原有镜像进行过修改......
  • 小波家族(Wavelet Families)
    摘自: IntroductiontoWaveletFamilies-MATLAB&Simulink-MathWorks中国    ......
  • 论文阅读笔记《Training Socially Engaging Robots Modeling Backchannel Behaviors w
    TrainingSociallyEngagingRobotsModelingBackchannelBehaviorswithBatchReinforcementLearning训练社交机器人:使用批量强化学习对反馈信号行为进行建模发表于TAC2022。HussainN,ErzinE,SezginTM,etal.TrainingSociallyEngagingRobots:ModelingBackc......
  • Robust Deep Reinforcement Learning through Adversarial Loss
    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!35thConferenceonNeuralInformationProcessingSystems(NeurIPS2021)  Abstract最近的研究表明,深度强化学习智能体很容易受到智能体输入上的小对抗性扰动的影响,这引发了人们对在现实世界中部署此类代理的担......