首页 > 其他分享 >CF1774F Magician and Pigs【性质】

CF1774F Magician and Pigs【性质】

时间:2023-05-21 15:44:05浏览次数:44  
标签:coef int lim sum CF1774F Pigs 操作 Magician mod

有一个空序列,需要维护如下三个操作:

  • 1 x:在序列中添加 \(x\)。
  • 2 x:把序列中每个元素的值减去 \(x\)。
  • 3:重复从第一条到本条操作的前一条的所有操作,包括操作 \(3\)。

当一个数的值 \(\leq 0\) 时,它将被移出序列。求最后有多少个数还在序列中。答案对 \(998244353\) 取模。

\(n \leq 8\times10^5\),\(x\leq 10^9\)。


趣味题。我们分别考虑每次 \(1\) 操作新增的猪对答案的贡献。考虑 \(3\) 操作的实质:设之前造成的伤害值总和为 \(k\),那么对于一只猪 \(x\),它会变成一只 \(x\) 和一只 \(x-k\)。对于 \(k=0\) 的情况我们特殊处理,那么由于每次 \(3\) 操作后 \(k\) 的值至少 \(\times 2\),所以对于任意一只猪,其之后有意义的 \(3\) 操作至多只有 \(\mathcal{O}(\log V)\) 个。

\(2\) 操作之间显然可以任意交换顺序。倒着做,提前减掉后面的 \(2\) 操作,就变成一个这样的问题:有 \(\mathcal{O}(\log V)\) 个数 \(k_i\),每个数选或不选,问选出来的数总和小于 \(x'\) 的方案数。这是一个背包问题,但由于可以通过排序使得 \(k_i \geq k_{i+1} \times 2\),因此存在更优的做法:从大到小枚举 \(k_i\),若当前 \(k_i \geq x'\),那么一定不选。当 \(k_i < x\) 时,如果不选,那么之后的元素的和一定不超过 \(k_i\),因此可以随便选,否则令 \(x' \gets x'-k_i\) 并考虑下一个元素即可。总时间复杂度 \(\mathcal{O}(n \log V)\)。

code
#include <bits/stdc++.h>
using namespace std;
constexpr int N = 8e5 + 5, mod = 998244353, inf = 1e9;
int n, m, a[N], b[N], c[N], cnt, pw2[N];
signed main() {
    ios :: sync_with_stdio(false);
	cin.tie(nullptr);
	cin >> n;
	pw2[0] = 1;
	for (int i = 1; i <= n; i++) pw2[i] = 1LL * pw2[i - 1] * 2 % mod;
	int lim = inf, sum = 0;
	for (int i = 1; i <= n; i++) {
		cin >> a[i];
		if (a[i] == 1 || a[i] == 2) cin >> b[i];
		if (a[i] == 2) sum += b[i];
		sum = min(sum, lim);
		if (a[i] == 3) b[i] = sum, sum = sum * 2;
		sum = min(sum, lim);
	}
	sum = 0;
	int coef = 1, ans = 0;
	for (int i = n; i >= 1; i--) {
		if (a[i] == 2) sum += b[i], sum = min(sum, lim);
		else if (a[i] == 3) {
			if (b[i] == lim) continue;
			if (b[i] == 0) { coef = 1LL * coef * 2 % mod; continue; }
			c[++cnt] = b[i];
		} else {
			b[i] -= sum;
			if (b[i] <= 0) continue;
			int f = 0, t = b[i];
			for (int j = 1; j <= cnt; j++) if (t > c[j]) {
				f = (f + pw2[cnt - j]) % mod;
				t -= c[j];
			} 
			f = (f + 1) % mod;
			ans = (ans + 1LL * coef * f % mod) % mod;
		}
	}
	cout << ans << "\n";
	return 0;
}

标签:coef,int,lim,sum,CF1774F,Pigs,操作,Magician,mod
From: https://www.cnblogs.com/came11ia/p/17418626.html

相关文章

  • cf1774f解题报告
    MagicianandPigs分析一下三个操作分别干了些什么新添一只猪使血量为\(x\)的猪血量变为\(\max(x-v,0)\)设前面操作后猪总共会受到\(s\)的伤害,复制一只血量为\(......
  • 1774F1 - Magician and Pigs (Easy Version)
    1774F1-MagicianandPigs(EasyVersion)思路1)3操作其实就是,把原有的猪都减去一个总的sum,然后加上原来自己的值,之后sum会翻倍。也就是sum太大之后,就不变了,因为减去......
  • POJ 1149 PIGS
       https://vjudge.net/problem/POJ-1149 #include<iostream>#include<queue>#include<cstring>#defineIOSstd::ios::sync_with_stdio(0)usingnamespace......