首页 > 其他分享 >第十二章.电商产品评论数据情感分析

第十二章.电商产品评论数据情感分析

时间:2023-05-04 15:55:33浏览次数:36  
标签:index word neg 第十二章 pos content 情感 result 电商

1、评论去重的代码

复制代码
import pandas as pd
import re
import jieba.posseg as psg
import numpy as np
 
 
# 去重,去除完全重复的数据
reviews = pd.read_csv("./reviews.csv")
reviews = reviews[['content', 'content_type']].drop_duplicates()
content = reviews['content']
复制代码

 2、数据清洗、分词、词性标注、去除停用词代码

复制代码
# 去除去除英文、数字等
# 由于评论主要为京东美的电热水器的评论,因此去除这些词语
strinfo = re.compile('[0-9a-zA-Z]|京东|美的|电热水器|热水器|')
content = content.apply(lambda x: strinfo.sub('', x))
worker = lambda s: [(x.word, x.flag) for x in psg.cut(s)] # 自定义简单分词函数
seg_word = content.apply(worker) 

# 将词语转为数据框形式,一列是词,一列是词语所在的句子ID,最后一列是词语在该句子的位置
n_word = seg_word.apply(lambda x: len(x))  # 每一评论中词的个数

n_content = [[x+1]*y for x,y in zip(list(seg_word.index), list(n_word))]
index_content = sum(n_content, [])  # 将嵌套的列表展开,作为词所在评论的id

seg_word = sum(seg_word, [])
word = [x[0] for x in seg_word]  # 词

nature = [x[1] for x in seg_word]  # 词性

content_type = [[x]*y for x,y in zip(list(reviews['content_type']), list(n_word))]
content_type = sum(content_type, [])  # 评论类型

result = pd.DataFrame({"index_content":index_content, 
                       "word":word,
                       "nature":nature,
                       "content_type":content_type}) 
# 删除标点符号
result = result[result['nature'] != 'x']  # x表示标点符号

# 删除停用词
stop_path = open("./stoplist.txt", 'r',encoding='UTF-8')
stop = stop_path.readlines()
stop = [x.replace('\n', '') for x in stop]
word = list(set(word) - set(stop))
result = result[result['word'].isin(word)]

# 构造各词在对应评论的位置列
n_word = list(result.groupby(by = ['index_content'])['index_content'].count())
index_word = [list(np.arange(0, y)) for y in n_word]
index_word = sum(index_word, [])  # 表示词语在改评论的位置

# 合并评论id,评论中词的id,词,词性,评论类型
result['index_word'] = index_word
复制代码

 4、提取含有名词的评论

# 提取含有名词类的评论
ind = result[['n' in x for x in result['nature']]]['index_content'].unique()
result = result[[x in ind for x in result['index_content']]]

 5、绘制词云

复制代码
import matplotlib.pyplot as plt
from wordcloud import WordCloud

frequencies = result.groupby(by = ['word'])['word'].count()
frequencies = frequencies.sort_values(ascending = False)
backgroud_Image=plt.imread('./pl.jpg')
wordcloud = WordCloud(font_path="C:\Windows\Fonts\STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
my_wordcloud = wordcloud.fit_words(frequencies)
plt.imshow(my_wordcloud)
plt.axis('off') 
plt.show()

# 将结果写出
result.to_csv("./word.csv", index = False, encoding = 'utf-8')
复制代码

 

6、匹配情感词

复制代码
import pandas as pd
import numpy as np
word = pd.read_csv("./word.csv")

# 读入正面、负面情感评价词
pos_comment = pd.read_csv("./正面评价词语(中文).txt", header=None,sep="\n", 
                          encoding = 'utf-8', engine='python')
neg_comment = pd.read_csv("./负面评价词语(中文).txt", header=None,sep="\n", 
                          encoding = 'utf-8', engine='python')
pos_emotion = pd.read_csv("./正面情感词语(中文).txt", header=None,sep="\n", 
                          encoding = 'utf-8', engine='python')
neg_emotion = pd.read_csv("./负面情感词语(中文).txt", header=None,sep="\n", 
                          encoding = 'utf-8', engine='python') 

# 合并情感词与评价词
positive = set(pos_comment.iloc[:,0])|set(pos_emotion.iloc[:,0])
negative = set(neg_comment.iloc[:,0])|set(neg_emotion.iloc[:,0])
intersection = positive&negative  # 正负面情感词表中相同的词语
positive = list(positive - intersection)
negative = list(negative - intersection)
positive = pd.DataFrame({"word":positive,
                         "weight":[1]*len(positive)})
negative = pd.DataFrame({"word":negative,
                         "weight":[-1]*len(negative)}) 

posneg = positive.append(negative)

#  将分词结果与正负面情感词表合并,定位情感词
data_posneg = posneg.merge(word, left_on = 'word', right_on = 'word', 
                           how = 'right')
data_posneg = data_posneg.sort_values(by = ['index_content','index_word'])
复制代码

7、修正情感倾向

复制代码
# 根据情感词前时候有否定词或双层否定词对情感值进行修正
# 载入否定词表
notdict = pd.read_csv("./not.csv")

# 处理否定修饰词
data_posneg['amend_weight'] = data_posneg['weight']  # 构造新列,作为经过否定词修正后的情感值
data_posneg['id'] = np.arange(0, len(data_posneg))
only_inclination = data_posneg.dropna()  # 只保留有情感值的词语
only_inclination.index = np.arange(0, len(only_inclination))
index = only_inclination['id']

for i in np.arange(0, len(only_inclination)):
    review = data_posneg[data_posneg['index_content'] == 
                         only_inclination['index_content'][i]]  # 提取第i个情感词所在的评论
    review.index = np.arange(0, len(review))
    affective = only_inclination['index_word'][i]  # 第i个情感值在该文档的位置
    if affective == 1:
        ne = sum([i in notdict['term'] for i in review['word'][affective - 1]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = -\
            data_posneg['weight'][index[i]]          
    elif affective > 1:
        ne = sum([i in notdict['term'] for i in review['word'][[affective - 1, 
                  affective - 2]]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = -\
            data_posneg['weight'][index[i]]
            
# 更新只保留情感值的数据
only_inclination = only_inclination.dropna()

# 计算每条评论的情感值
emotional_value = only_inclination.groupby(['index_content'],
                                           as_index=False)['amend_weight'].sum()

# 去除情感值为0的评论
emotional_value = emotional_value[emotional_value['amend_weight'] != 0]
复制代码

8、查看情感分析的结果

复制代码
# 给情感值大于0的赋予评论类型(content_type)为pos,小于0的为neg
emotional_value['a_type'] = ''
emotional_value['a_type'][emotional_value['amend_weight'] > 0] = 'pos'
emotional_value['a_type'][emotional_value['amend_weight'] < 0] = 'neg'

# 查看情感分析结果
result = emotional_value.merge(word, 
                               left_on = 'index_content', 
                               right_on = 'index_content',
                               how = 'left')

result = result[['index_content','content_type', 'a_type']].drop_duplicates() 
confusion_matrix = pd.crosstab(result['content_type'], result['a_type'], 
                               margins=True)  # 制作交叉表
(confusion_matrix.iat[0,0] + confusion_matrix.iat[1,1])/confusion_matrix.iat[2,2]

# 提取正负面评论信息
ind_pos = list(emotional_value[emotional_value['a_type'] == 'pos']['index_content'])
ind_neg = list(emotional_value[emotional_value['a_type'] == 'neg']['index_content'])
posdata = word[[i in ind_pos for i in word['index_content']]]
negdata = word[[i in ind_neg for i in word['index_content']]]

# 绘制词云
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# 正面情感词词云
freq_pos = posdata.groupby(by = ['word'])['word'].count()
freq_pos = freq_pos.sort_values(ascending = False)
backgroud_Image=plt.imread('./pl.jpg')
wordcloud = WordCloud(font_path="C:\Windows\Fonts\STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
pos_wordcloud = wordcloud.fit_words(freq_pos)
plt.imshow(pos_wordcloud)
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.axis('off') 
plt.show()
# 负面情感词词云
freq_neg = negdata.groupby(by = ['word'])['word'].count()
freq_neg = freq_neg.sort_values(ascending = False)
neg_wordcloud = wordcloud.fit_words(freq_neg)
plt.imshow(neg_wordcloud)
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.axis('off') 
plt.show()

# 将结果写出,每条评论作为一行
posdata.to_csv("./posdata.csv", index = False, encoding = 'utf-8')
negdata.to_csv("./negdata.csv", index = False, encoding = 'utf-8')
复制代码

  

 9、建立词典及语料库

复制代码
import pandas as pd
import numpy as np
import re
import itertools
import matplotlib.pyplot as plt

# 载入情感分析后的数据
posdata = pd.read_csv("./posdata.csv", encoding = 'utf-8')
negdata = pd.read_csv("./negdata.csv", encoding = 'utf-8')

from gensim import corpora, models
# 建立词典
pos_dict = corpora.Dictionary([[i] for i in posdata['word']])  # 正面
neg_dict = corpora.Dictionary([[i] for i in negdata['word']])  # 负面

# 建立语料库
pos_corpus = [pos_dict.doc2bow(j) for j in [[i] for i in posdata['word']]]  # 正面
neg_corpus = [neg_dict.doc2bow(j) for j in [[i] for i in negdata['word']]]   # 负面
复制代码

 10、主题数寻优

复制代码
# 构造主题数寻优函数
def cos(vector1, vector2):  # 余弦相似度函数
    dot_product = 0.0;  
    normA = 0.0;  
    normB = 0.0;  
    for a,b in zip(vector1, vector2): 
        dot_product += a*b  
        normA += a**2  
        normB += b**2  
    if normA == 0.0 or normB==0.0:  
        return(None)  
    else:  
        return(dot_product / ((normA*normB)**0.5))   

# 主题数寻优
def lda_k(x_corpus, x_dict):  
    
    # 初始化平均余弦相似度
    mean_similarity = []
    mean_similarity.append(1)
    
    # 循环生成主题并计算主题间相似度
    for i in np.arange(2,11):
        lda = models.LdaModel(x_corpus, num_topics = i, id2word = x_dict)  # LDA模型训练
        for j in np.arange(i):
            term = lda.show_topics(num_words = 50)
            
        # 提取各主题词
        top_word = []
        for k in np.arange(i):
            top_word.append([''.join(re.findall('"(.*)"',i)) \
                             for i in term[k][1].split('+')])  # 列出所有词
           
        # 构造词频向量
        word = sum(top_word,[])  # 列出所有的词   
        unique_word = set(word)  # 去除重复的词
        
        # 构造主题词列表,行表示主题号,列表示各主题词
        mat = []
        for j in np.arange(i):
            top_w = top_word[j]
            mat.append(tuple([top_w.count(k) for k in unique_word]))  
            
        p = list(itertools.permutations(list(np.arange(i)),2))
        l = len(p)
        top_similarity = [0]
        for w in np.arange(l):
            vector1 = mat[p[w][0]]
            vector2 = mat[p[w][1]]
            top_similarity.append(cos(vector1, vector2))
            
        # 计算平均余弦相似度
        mean_similarity.append(sum(top_similarity)/l)
    return(mean_similarity)
            
# 计算主题平均余弦相似度
pos_k = lda_k(pos_corpus, pos_dict)
neg_k = lda_k(neg_corpus, neg_dict)        

# 绘制主题平均余弦相似度图形
from matplotlib.font_manager import FontProperties  
font = FontProperties(size=14)
#解决中文显示问题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False  
fig = plt.figure(figsize=(10,8))
ax1 = fig.add_subplot(211)
ax1.plot(pos_k)
ax1.set_xlabel(' ', fontproperties=font)

ax2 = fig.add_subplot(212)
ax2.plot(neg_k)
ax2.set_xlabel(' ', fontproperties=font)
复制代码

 

 11、LDA主题分析

复制代码
# LDA主题分析
pos_lda = models.LdaModel(pos_corpus, num_topics = 3, id2word = pos_dict)  
neg_lda = models.LdaModel(neg_corpus, num_topics = 3, id2word = neg_dict)  
pos_lda.print_topics(num_words = 10)

neg_lda.print_topics(num_words = 10)
复制代码

 

标签:index,word,neg,第十二章,pos,content,情感,result,电商
From: https://www.cnblogs.com/panlongcong/p/17371502.html

相关文章

  • 数据挖掘-电商产品评论数据情感分析
    importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv("./reviews.csv")reviews=reviews[['content','content_type']].drop_duplicates()content=reviews['co......
  • 直播电商平台开发,环形进度条组件
    直播电商平台开发,环形进度条组件 <template> <divclass="content"ref="box">  <svg   :id="idStr"   style="transform:rotate(-90deg)"   :width="width"   :height="width"   xmlns=&......
  • 第十二章——电商产品评论数据情感分析
    1、评论去重的代码importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv("./reviews.csv")reviews=reviews[['content','content_type']].drop_duplicates()content=revie......
  • 跨境电商出海东南亚,茄子科技助力企业实现品牌出海
    作为亚洲最具潜力的电商市场之一,东南亚地区拥有6亿多人口,电商市场高达218亿美元。人口红利、数字化经济高额投资、移动设备全面普及等,正在为东南亚的跨境电商搭建起庞大的市场基础框架,推动电商多种形态在东南亚崛起,天然的电商发展沃土让东南亚正成为企业品牌出海寻求增量的优质选择......
  • 电商产品评论数据情感分析
    #代码12-1评论去重的代码importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv("D:/school/three/below/12/data/reviews.csv")reviews=reviews[['content','content_type']].......
  • 电商产品评论数据情感分析
    #代码12-1评论去重的代码importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv("D:/JupyterLab-Portable-3.1.0-3.9/新建文件夹/第十二章/reviews.csv")reviews=reviews[['content','content......
  • 【论文翻译】COGMEN:基于上下文化GNN的多模态情感识别
    摘要情感是人类互动的固有组成部分,因此,开发能够理解和识别人类情感的人工智能系统势在必行。在涉及不同人的谈话中,一个人的情绪受到另一个说话人的语句和自己对语句的情绪状态的影响。在本文中,我们提出了基于上下文化图神经网络的多模态情感识别(COGMEN)系统,该系统利用了局部信息......
  • 电商产品评论数据情感分析
    #代码12-1评论去重的代码importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv(r"G:\data\data\reviews.csv")reviews=reviews[['content','content_type']].drop_dupli......
  • Meta Shop 元宇宙商城:Facebook主播最爱的移动电商平台app
    新加坡一家高科技独角兽公司 MetaShop【元宇宙商城】自2022年成立以来,已迅速成为Facebook主播和消费者们的最爱,也是东南亚最受欢迎的选品购物类APP。这款移动电商平台为消费者提供了一种全新的购物体验,主播在带货过程中可以更轻松地选择适合他们的商品,而买家也可以在移动端便捷购......
  • 什么是无货源电商
    什么是无货源电商 无货源电商是指没有自己的库存,而是通过第三方供应商来提供商品的电子商务模式。无货源电商的优势在于可以提供更多的商品种类,而且不需要投入大量的资金进行库存管理,可以节省成本。 无货源分两种 第一种店群模式,也就是现在各大平台疯狂收割的一种方式,店......