首页 > 其他分享 >手把手教你对抓取的文本进行分词、词频统计、词云可视化和情感分析

手把手教你对抓取的文本进行分词、词频统计、词云可视化和情感分析

时间:2023-04-27 11:01:37浏览次数:44  
标签:文本 word text utf 词云 词频 txt 分词


苍苍竹林寺,杳杳钟声晚。

大家好,我是Python进阶者。

前言

前几天星耀群有个叫【小明】的粉丝在问了一道关于Python处理文本可视化+语义分析的问题,如下图所示。

他要构建语料库,目前通过Python网络爬虫抓到的数据存在一个csv文件里边,现在要把数据放进txt里,表示不会,然后还有后面的词云可视化,分词,语义分析等,都不太会。

关于词云的文章,历史文章已经写了十几篇了,感兴趣的话可以在公众号历史文章搜索关键字“词云”前往,但是关于分词和语义分析的文章,就分享过一篇,这个我在读研的时候写的,虽然有些时日,但是内容依旧精彩,欢迎前往查探:Python大佬分析了15万歌词,告诉你民谣歌手们到底在唱什么。

一、思路

内容稍微有点多,大体思路如下,先将csv中的文本取出,之后使用停用词做分词处理,再做词云图,之后做情感分析。

1、将csv文件中的文本逐行取出,存新的txt文件,这里运行代码《读取csv文件中文本并存txt文档.py》进行实现,得到文件《职位表述文本.txt》

2、运行代码《使用停用词获取最后的文本内容.py》,得到使用停用词获取最后的文本内容,生成文件《职位表述文本分词后_outputs.txt》

3、运行代码《指定txt词云图.py》,可以得到词云图;

4、运行代码《jieba分词并统计词频后输出结果到Excel和txt文档.py》,得到《wordCount_all_lyrics.xls》和《分词结果.txt》文件,将《分词结果.txt》中的统计值可以去除,生成《情感分析用词.txt》,给第五步情感分析做准备

5、运行代码《情感分析.py》,得到情感分析的统计值,取平均值可以大致确认情感是正还是负。

关于本文的源码和数据我都已经打包好上传到git了,在公众号后台回复关键词小明的数据即可获取。

手把手教你对抓取的文本进行分词、词频统计、词云可视化和情感分析_数据可视化

二、实现过程

1.将csv文件中的文本逐行取出,存新的txt文件

这里运行代码《读取csv文件中文本并存txt文档.py》进行实现,得到文件《职位表述文本.txt》,代码如下。

# coding: utf-8
import pandas as pd
df = pd.read_csv('./职位描述.csv', encoding='gbk')
# print(df.head())

for text in df['Job_Description']:
    # print(text)
    if text is not None:
        with open('职位表述文本.txt', mode='a', encoding='utf-8') as file:
            file.write(str(text))

print('写入完成')
2.使用停用词获取最后的文本内容

运行代码《使用停用词获取最后的文本内容.py》,得到使用停用词获取最后的文本内容,生成文件《职位表述文本分词后_outputs.txt》,代码如下:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import jieba

# jieba.load_userdict('userdict.txt')
# 创建停用词list
def stopwordslist(filepath):
    stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]
    return stopwords

# 对句子进行分词
def seg_sentence(sentence):
    sentence_seged = jieba.cut(sentence.strip())
    stopwords = stopwordslist('stop_word.txt')  # 这里加载停用词的路径
    outstr = ''
    for word in sentence_seged:
        if word not in stopwords:
            if word != '\t':
                outstr += word
                outstr += " "
    return outstr

inputs = open('职位表述文本.txt', 'r', encoding='utf-8')
outputs = open('职位表述文本分词后_outputs.txt', 'w', encoding='utf-8')
for line in inputs:
    line_seg = seg_sentence(line)  # 这里的返回值是字符串
    outputs.write(line_seg + '\n')
outputs.close()
inputs.close()

关键节点,都有相应的注释,你只需要替换对应的txt文件即可,如果有遇到编码问题,将utf-8改为gbk即可解决。

3.制作词云图

运行代码《指定txt词云图.py》,可以得到词云图,代码如下:

from wordcloud import WordCloud
import jieba
import numpy
import PIL.Image as Image

def cut(text):
    wordlist_jieba=jieba.cut(text)
    space_wordlist=" ".join(wordlist_jieba)
    return space_wordlist
with open(r"C:\Users\pdcfi\Desktop\xiaoming\职位表述文本.txt" ,encoding="utf-8")as file:
    text=file.read()
    text=cut(text)
    mask_pic=numpy.array(Image.open(r"C:\Users\pdcfi\Desktop\xiaoming\python.png"))
    wordcloud = WordCloud(font_path=r"C:/Windows/Fonts/simfang.ttf",
    collocations=False,
    max_words= 100,
    min_font_size=10, 
    max_font_size=500,
    mask=mask_pic).generate(text)
    image=wordcloud.to_image()
    # image.show()
    wordcloud.to_file('词云图.png')  # 把词云保存下来

如果想用你自己的图片,只需要替换原始图片即可。这里使用Python底图做演示,得到的效果如下:


手把手教你对抓取的文本进行分词、词频统计、词云可视化和情感分析_python_02

4.分词统计

运行代码《jieba分词并统计词频后输出结果到Excel和txt文档.py》,得到《wordCount_all_lyrics.xls》和《分词结果.txt》文件,将《分词结果.txt》中的统计值可以去除,生成《情感分析用词.txt》,给第五步情感分析做准备,代码如下:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-

import sys
import jieba
import jieba.analyse
import xlwt  # 写入Excel表的库

# reload(sys)
# sys.setdefaultencoding('utf-8')

if __name__ == "__main__":

    wbk = xlwt.Workbook(encoding='ascii')
    sheet = wbk.add_sheet("wordCount")  # Excel单元格名字
    word_lst = []
    key_list = []
    for line in open('职位表述文本.txt', encoding='utf-8'):  # 需要分词统计的原始目标文档

        item = line.strip('\n\r').split('\t')  # 制表格切分
        # print item
        tags = jieba.analyse.extract_tags(item[0])  # jieba分词
        for t in tags:
            word_lst.append(t)

    word_dict = {}
    with open("分词结果.txt", 'w') as wf2:  # 指定生成文件的名称

        for item in word_lst:
            if item not in word_dict:  # 统计数量
                word_dict[item] = 1
            else:
                word_dict[item] += 1

        orderList = list(word_dict.values())
        orderList.sort(reverse=True)
        # print orderList
        for i in range(len(orderList)):
            for key in word_dict:
                if word_dict[key] == orderList[i]:
                    wf2.write(key + ' ' + str(word_dict[key]) + '\n')  # 写入txt文档
                    key_list.append(key)
                    word_dict[key] = 0

    for i in range(len(key_list)):
        sheet.write(i, 1, label=orderList[i])
        sheet.write(i, 0, label=key_list[i])
    wbk.save('wordCount_all_lyrics.xls')  # 保存为 wordCount.xls文件

得到的txt和excel文件如下所示:


手把手教你对抓取的文本进行分词、词频统计、词云可视化和情感分析_可视化_03

5.情感分析的统计值

运行代码《情感分析.py》,得到情感分析的统计值,取平均值可以大致确认情感是正还是负,代码如下:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from snownlp import SnowNLP

# 积极/消极
# print(s.sentiments)  # 0.9769551298267365  positive的概率


def get_word():
    with open("情感分析用词.txt", encoding='utf-8') as f:
        line = f.readline()
        word_list = []
        while line:
            line = f.readline()
            word_list.append(line.strip('\r\n'))
        f.close()
        return word_list


def get_sentiment(word):
    text = u'{}'.format(word)
    s = SnowNLP(text)
    print(s.sentiments)


if __name__ == '__main__':
    words = get_word()
    for word in words:
        get_sentiment(word)

# text = u'''
# 也许
# '''
# s = SnowNLP(text)
# print(s.sentiments)
#     with open('lyric_sentiments.txt', 'a', encoding='utf-8') as fp:
#         fp.write(str(s.sentiments)+'\n')
# print('happy end')

基于NLP语义分析,程序运行之后,得到的情感得分值如下图所示:

手把手教你对抓取的文本进行分词、词频统计、词云可视化和情感分析_数据分析_04

将得数取平均值,一般满足0.5分以上,说明情感是积极的,这里经过统计之后,发现整体是积极的。

四、总结

我是Python进阶者。本文基于粉丝提问,针对一次文本处理,手把手教你对抓取的文本进行分词、词频统计、词云可视化和情感分析,算是完成了一个小项目了。下次再遇到类似这种问题或者小的课堂作业,不妨拿本项目练练手,说不定有妙用噢,拿个高分不在话下!


标签:文本,word,text,utf,词云,词频,txt,分词
From: https://blog.51cto.com/u_13389043/6229975

相关文章

  • java 分词统计
    依赖(谷歌基于lucene的中文分词IKAnalyzer)<dependency><groupId>org.wltea</groupId><artifactId>ikanalyzer</artifactId><version>5.0.2</version></dependency><dependency><groupId>org.apache.lucen......
  • 力扣——192.统计词频(shell)
    title:力扣——192.统计词频(shell)题目描述:写一个bash脚本以统计一个文本文件words.txt中每个单词出现的频率。为了简单起见,你可以假设:words.txt只包括小写字母和''。每个单词只由小写字母组成。单词间由一个或多个空格字符分隔。示例:假设words.txt内容如下:th......
  • python_数据分析与挖掘实战_词云
    #-*-coding:utf-8-*-#代码12-1评论去重的代码importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv("../../data/0404/reviews.csv")reviews=reviews[['content','content_ty......
  • 词云统计
    #代码12-1评论去重的代码importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv(r"G:\data\data\reviews.csv")reviews=reviews[['content','content_type']].drop_duplicat......
  • ik 分词
    1.查找ES进程ps-ef|grepelastic2.杀掉ES进程kill-99163(进程号)3.重启ESbin/elasticsearch-d1.下载与你ES对应版本的IK分词器ES7.9.3->elasticsearch-analysis-ik-7.9.3.zip2.在/es安装目录/plugins目录新建ik目录3.将elasticsearch-analysis-ik-7.9.3.zip内容解压缩......
  • 动词过去式、过去分词不规则变化词表
    一般来说,英语中使用过去时、完成时等时态时,动词要变为过去式或过去分词的形式。 那么动词过去式、动词过去分词如何变化呢? 一般情况下,规则动词的过去式、过去分词的构成规则相同。 规则动词变化形式有: ▪直接在动词原型后面+ed构成过去式,如called; ▪以不发音e结尾......
  • 挖掘词云
    #-*-coding:utf-8-*-#代码12-1评论去重的代码importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv("../../data/0404/reviews.csv")reviews=reviews[['content','content_typ......
  • Python stylecloud制作酷炫的词云图
    ✅作者简介:热爱科研的算法开发者,Python、Matlab项目可交流、沟通、学习。......
  • 【C++】统计文本词频程序
    1#include<iostream>2#include<fstream>3#include<string>4#include<iomanip>5#include<vector>6#include<map>7#include<cctype>8#include<algorithm>9boolcmp(std::pair<std::strin......
  • ES搜索框架--设置IK分词器
    ES的默认中文分词效果太差了,稍微长一点的词句就完全匹配不到,于是选择使用安装IK中文分词器来实现索引的分词。参考:https://blog.csdn.net/w1014074794/article/details/119762827https://www.bbsmax.com/A/6pdDqDaXzw/一、安装官网教程:https://github.com/medcl/elasticsearch-ana......