首页 > 其他分享 >词云统计

词云统计

时间:2023-04-20 15:24:53浏览次数:38  
标签:index word neg content 词云 result data 统计

# 代码12-1 评论去重的代码

import pandas as pd
import re
import jieba.posseg as psg
import numpy as np


# 去重,去除完全重复的数据
reviews = pd.read_csv(r"G:\data\data\reviews.csv")
reviews = reviews[['content', 'content_type']].drop_duplicates()
content = reviews['content']



# 代码12-2 数据清洗

# 去除去除英文、数字等
# 由于评论主要为京东美的电热水器的评论,因此去除这些词语
strinfo = re.compile('[0-9a-zA-Z]|京东|美的|电热水器|热水器|')
content = content.apply(lambda x: strinfo.sub('', x))



# 代码12-3 分词、词性标注、去除停用词代码

# 分词
worker = lambda s: [(x.word, x.flag) for x in psg.cut(s)] # 自定义简单分词函数
seg_word = content.apply(worker)

# 将词语转为数据框形式,一列是词,一列是词语所在的句子ID,最后一列是词语在该句子的位置
n_word = seg_word.apply(lambda x: len(x))  # 每一评论中词的个数

n_content = [[x+1]*y for x,y in zip(list(seg_word.index), list(n_word))]
index_content = sum(n_content, [])  # 将嵌套的列表展开,作为词所在评论的id

seg_word = sum(seg_word, [])
word = [x[0] for x in seg_word]  # 词

nature = [x[1] for x in seg_word]  # 词性

content_type = [[x]*y for x,y in zip(list(reviews['content_type']), list(n_word))]
content_type = sum(content_type, [])  # 评论类型

result = pd.DataFrame({"index_content":index_content,
                       "word":word,
                       "nature":nature,
                       "content_type":content_type})

# 删除标点符号
result = result[result['nature'] != 'x']  # x表示标点符号

# 删除停用词
stop_path = open(r"G:\data\data\stoplist.txt", 'r',encoding='UTF-8')

stop = stop_path.readlines()
stop = [x.replace('\n', '') for x in stop]
word = list(set(word) - set(stop))
result = result[result['word'].isin(word)]

# 构造各词在对应评论的位置列
n_word = list(result.groupby(by = ['index_content'])['index_content'].count())
index_word = [list(np.arange(0, y)) for y in n_word]
index_word = sum(index_word, [])  # 表示词语在改评论的位置

# 合并评论id,评论中词的id,词,词性,评论类型
result['index_word'] = index_word




# 代码12-4 提取含有名词的评论

# 提取含有名词类的评论
ind = result[['n' in x for x in result['nature']]]['index_content'].unique()
result = result[[x in ind for x in result['index_content']]]



# 代码12-5 绘制词云

import matplotlib.pyplot as plt
from wordcloud import WordCloud

frequencies = result.groupby(by = ['word'])['word'].count()
frequencies = frequencies.sort_values(ascending = False)
backgroud_Image=plt.imread(r"G:\data\data\pl.jpg")
wordcloud = WordCloud(font_path="C:\Windows\Fonts\STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
my_wordcloud = wordcloud.fit_words(frequencies)
plt.imshow(my_wordcloud)
plt.axis('off')
plt.show()

 

# 将结果写出
result.to_csv(r"G:\data\data\word.csv", index = False, encoding = 'utf-8')

# -*- coding: utf-8 -*-

# 代码12-3

import numpy as np
# 分词
worker = lambda s: [(x.word, x.flag) for x in psg.cut(s)] # 自定义简单分词函数
seg_word = content.apply(worker)

# 将词语转为数据框形式,一列是词,一列是词语所在的句子ID,最后一列是词语在该句子的位置
n_word = seg_word.apply(lambda x: len(x))  # 每一评论中词的个数

n_content = [[x+1]*y for x,y in zip(list(seg_word.index), list(n_word))]
index_content = sum(n_content, [])  # 将嵌套的列表展开,作为词所在评论的id

seg_word = sum(seg_word, [])
word = [x[0] for x in seg_word]  # 词

nature = [x[1] for x in seg_word]  # 词性

content_type = [[x]*y for x,y in zip(list(reviews['content_type']),
                list(n_word))]
content_type = sum(content_type, [])  # 评论类型

result = pd.DataFrame({"index_content":index_content,
                       "word":word,
                       "nature":nature,
                       "content_type":content_type})

# 删除标点符号
result = result[result['nature'] != 'x']  # x表示标点符号

# 删除停用词
stop_path = open(r"G:\data\data\stoplist.txt", 'r',encoding='UTF-8')
stop = stop_path.readlines()
stop = [x.replace('\n', '') for x in stop]
word = list(set(word) - set(stop))
result = result[result['word'].isin(word)]

# 构造各词在对应评论的位置列
n_word = list(result.groupby(by = ['index_content'])['index_content'].count())
index_word = [list(np.arange(0, y)) for y in n_word]
index_word = sum(index_word, [])  # 表示词语在改评论的位置

# 合并评论id,评论中词的id,词,词性,评论类型
result['index_word'] = index_word



# 代码12-4

# 提取含有名词类的评论
ind = result[['n' in x for x in result['nature']]]['index_content'].unique()
result = result[[x in ind for x in result['index_content']]]



# 代码12-5

import matplotlib.pyplot as plt
from wordcloud import WordCloud

frequencies = result.groupby(by = ['word'])['word'].count()
frequencies = frequencies.sort_values(ascending = False)
backgroud_Image=plt.imread(r"G:\data\data\pl.jpg")
wordcloud = WordCloud(font_path="C:\Windows\Fonts\STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
my_wordcloud = wordcloud.fit_words(frequencies)
plt.imshow(my_wordcloud)
plt.axis('off')
plt.show()

 

# 将结果写出
result.to_csv(r"G:\data\data\word.csv", index = False, encoding = 'utf-8')

# -*- coding: utf-8 -*-

# 代码12-6 匹配情感词

import pandas as pd
import numpy as np

word = pd.read_csv(r"G:\data\data\word.csv")

# 读入正面、负面情感评价词
pos_comment = pd.read_csv(r"G:\data\data\正面评价词语(中文).txt", header=None, sep="\n",
                          encoding='utf-8', engine='python')
neg_comment = pd.read_csv(r"G:\data\data\负面评价词语(中文).txt", header=None, sep="\n",
                          encoding='utf-8', engine='python')
pos_emotion = pd.read_csv(r"G:\data\data\正面情感词语(中文).txt", header=None, sep="\n",
                          encoding='utf-8', engine='python')
neg_emotion = pd.read_csv(r"G:\data\data\负面情感词语(中文).txt", header=None, sep="\n",
                          encoding='utf-8', engine='python')

# 合并情感词与评价词
positive = set(pos_comment.iloc[:, 0]) | set(pos_emotion.iloc[:, 0])
negative = set(neg_comment.iloc[:, 0]) | set(neg_emotion.iloc[:, 0])
intersection = positive & negative  # 正负面情感词表中相同的词语
positive = list(positive - intersection)
negative = list(negative - intersection)
positive = pd.DataFrame({"word": positive,
                         "weight": [1] * len(positive)})
negative = pd.DataFrame({"word": negative,
                         "weight": [-1] * len(negative)})

posneg = positive.append(negative)

#  将分词结果与正负面情感词表合并,定位情感词
data_posneg = posneg.merge(word, left_on='word', right_on='word',
                           how='right')
data_posneg = data_posneg.sort_values(by=['index_content', 'index_word'])

# 代码12-7 修正情感倾向

# 根据情感词前时候有否定词或双层否定词对情感值进行修正
# 载入否定词表
notdict = pd.read_csv(r"G:\data\data\not.csv")

# 处理否定修饰词
data_posneg['amend_weight'] = data_posneg['weight']  # 构造新列,作为经过否定词修正后的情感值
data_posneg['id'] = np.arange(0, len(data_posneg))
only_inclination = data_posneg.dropna()  # 只保留有情感值的词语
only_inclination.index = np.arange(0, len(only_inclination))
index = only_inclination['id']

for i in np.arange(0, len(only_inclination)):
    review = data_posneg[data_posneg['index_content'] ==
                         only_inclination['index_content'][i]]  # 提取第i个情感词所在的评论
    review.index = np.arange(0, len(review))
    affective = only_inclination['index_word'][i]  # 第i个情感值在该文档的位置
    if affective == 1:
        ne = sum([i in notdict['term'] for i in review['word'][affective - 1]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = - \
                data_posneg['weight'][index[i]]
    elif affective > 1:
        ne = sum([i in notdict['term'] for i in review['word'][[affective - 1,
                                                                affective - 2]]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = - \
                data_posneg['weight'][index[i]]

# 更新只保留情感值的数据
only_inclination = only_inclination.dropna()

# 计算每条评论的情感值
emotional_value = only_inclination.groupby(['index_content'],
                                           as_index=False)['amend_weight'].sum()

# 去除情感值为0的评论
emotional_value = emotional_value[emotional_value['amend_weight'] != 0]

# 代码12-8 查看情感分析效果

# 给情感值大于0的赋予评论类型(content_type)为pos,小于0的为neg
emotional_value['a_type'] = ''
emotional_value['a_type'][emotional_value['amend_weight'] > 0] = 'pos'
emotional_value['a_type'][emotional_value['amend_weight'] < 0] = 'neg'

# 查看情感分析结果
result = emotional_value.merge(word,
                               left_on='index_content',
                               right_on='index_content',
                               how='left')

result = result[['index_content', 'content_type', 'a_type']].drop_duplicates()
confusion_matrix = pd.crosstab(result['content_type'], result['a_type'],
                               margins=True)  # 制作交叉表
(confusion_matrix.iat[0, 0] + confusion_matrix.iat[1, 1]) / confusion_matrix.iat[2, 2]

# 提取正负面评论信息
ind_pos = list(emotional_value[emotional_value['a_type'] == 'pos']['index_content'])
ind_neg = list(emotional_value[emotional_value['a_type'] == 'neg']['index_content'])
posdata = word[[i in ind_pos for i in word['index_content']]]
negdata = word[[i in ind_neg for i in word['index_content']]]

# 绘制词云
import matplotlib.pyplot as plt
from wordcloud import WordCloud

# 正面情感词词云
freq_pos = posdata.groupby(by=['word'])['word'].count()
freq_pos = freq_pos.sort_values(ascending=False)
backgroud_Image = plt.imread(r"G:\data\data\pl.jpg")
wordcloud = WordCloud(font_path="C:\Windows\Fonts\STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
pos_wordcloud = wordcloud.fit_words(freq_pos)
plt.imshow(pos_wordcloud)
plt.axis('off')
plt.show()

 

# 负面情感词词云
freq_neg = negdata.groupby(by=['word'])['word'].count()
freq_neg = freq_neg.sort_values(ascending=False)
neg_wordcloud = wordcloud.fit_words(freq_neg)
plt.imshow(neg_wordcloud)
plt.axis('off')
plt.show()

 

# 将结果写出,每条评论作为一行
posdata.to_csv(r"G:\data\data\posdata.csv", index=False, encoding='utf-8')
negdata.to_csv(r"G:\data\data\negdata.csv", index=False, encoding='utf-8')

# -*- coding: utf-8 -*-

# 代码12-9 建立词典及语料库

import pandas as pd
import numpy as np
import re
import itertools
import matplotlib.pyplot as plt

# 载入情感分析后的数据
posdata = pd.read_csv(r"G:\data\data\posdata.csv", encoding='utf-8')
negdata = pd.read_csv(r"G:\data\data\negdata.csv", encoding='utf-8')

from gensim import corpora, models

# 建立词典
pos_dict = corpora.Dictionary([[i] for i in posdata['word']])  # 正面
neg_dict = corpora.Dictionary([[i] for i in negdata['word']])  # 负面

# 建立语料库
pos_corpus = [pos_dict.doc2bow(j) for j in [[i] for i in posdata['word']]]  # 正面
neg_corpus = [neg_dict.doc2bow(j) for j in [[i] for i in negdata['word']]]  # 负面


# 代码12-10 主题数寻优

# 构造主题数寻优函数
def cos(vector1, vector2):  # 余弦相似度函数
    dot_product = 0.0;
    normA = 0.0;
    normB = 0.0;
    for a, b in zip(vector1, vector2):
        dot_product += a * b
        normA += a ** 2
        normB += b ** 2
    if normA == 0.0 or normB == 0.0:
        return (None)
    else:
        return (dot_product / ((normA * normB) ** 0.5))

    # 主题数寻优


def lda_k(x_corpus, x_dict):
    # 初始化平均余弦相似度
    mean_similarity = []
    mean_similarity.append(1)

    # 循环生成主题并计算主题间相似度
    for i in np.arange(2, 11):
        lda = models.LdaModel(x_corpus, num_topics=i, id2word=x_dict)  # LDA模型训练
        for j in np.arange(i):
            term = lda.show_topics(num_words=50)

        # 提取各主题词
        top_word = []
        for k in np.arange(i):
            top_word.append([''.join(re.findall('"(.*)"', i)) \
                             for i in term[k][1].split('+')])  # 列出所有词

        # 构造词频向量
        word = sum(top_word, [])  # 列出所有的词
        unique_word = set(word)  # 去除重复的词

        # 构造主题词列表,行表示主题号,列表示各主题词
        mat = []
        for j in np.arange(i):
            top_w = top_word[j]
            mat.append(tuple([top_w.count(k) for k in unique_word]))

        p = list(itertools.permutations(list(np.arange(i)), 2))
        l = len(p)
        top_similarity = [0]
        for w in np.arange(l):
            vector1 = mat[p[w][0]]
            vector2 = mat[p[w][1]]
            top_similarity.append(cos(vector1, vector2))

        # 计算平均余弦相似度
        mean_similarity.append(sum(top_similarity) / l)
    return (mean_similarity)


# 计算主题平均余弦相似度
pos_k = lda_k(pos_corpus, pos_dict)
neg_k = lda_k(neg_corpus, neg_dict)

# 绘制主题平均余弦相似度图形
from matplotlib.font_manager import FontProperties

font = FontProperties(size=14)
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
fig = plt.figure(figsize=(10, 8))
ax1 = fig.add_subplot(211)
ax1.plot(pos_k)
ax1.set_xlabel('正面评论LDA主题数寻优', fontproperties=font)

ax2 = fig.add_subplot(212)
ax2.plot(neg_k)
ax2.set_xlabel('负面评论LDA主题数寻优', fontproperties=font)

# 代码12-11 LDA主题分析

# LDA主题分析
pos_lda = models.LdaModel(pos_corpus, num_topics=3, id2word=pos_dict)
neg_lda = models.LdaModel(neg_corpus, num_topics=3, id2word=neg_dict)
pos_lda.print_topics(num_words=10)

neg_lda.print_topics(num_words=10)
plt.show()

 

 

 

 

  

标签:index,word,neg,content,词云,result,data,统计
From: https://www.cnblogs.com/Doctor-Schnabel/p/17336983.html

相关文章

  • SATI 文献题录信息统计分析工具
    SATI支持以下数据分析任务:   多种数据清洗工具:文献去重、词干提取、应用停用词、智能清洗等。   提取高频字段,并输出频次排名列表。   基于高频字段生成时间序列图,可输出下载时间序列数据。   构建高频字段共现矩阵,并输出Excel/TSV格式矩阵。   自动基于共现......
  • Chatgpt 帮忙写的脚本_用shell 写一段代码,要求获取指定路径下所有的文件夹,并统计每个
    需求:用shell写一段代码,要求获取指定路径下所有的文件夹,并统计每个文件夹所包含的文件个数,将文件路径,包含的文件数输出到指定路径的CSV格式文件中以下是使用Shell实现获取指定路径下所有文件夹,并统计每个文件夹中包含的文件个数,并将结果导出到CSV文件的示例代码:点击查看......
  • 基于SSM和MySQL实现的疫情数据统计分析系统
    基于SSM和MySQL实现的疫情数据统计分析系统访问【WRITE-BUG数字空间】_[内附完整源码和文档]1.项目简介疫情数据统计分析系统是一个基于SSM框架的网页端系统,项目中实现的功能如下:用户访问网站可以浏览全国疫情的图表信息,管理员登录后台管理系统,可以进行数据录入、数据查询、图表展......
  • L2-3 智能护理中心统计
    题目描述:智能护理中心系统将辖下的护理点分属若干个大区,例如华东区、华北区等;每个大区又分若干个省来进行管理;省又分市,等等。我们将所有这些有管理或护理功能的单位称为“管理结点”。现在已知每位老人由唯一的一个管理结点负责,每个管理结点属于唯一的上级管理结点管辖。你需要实......
  • R基本统计分析
    #一、基本统计分析之基本方法#####R语言实战—第7章(描述性统计、频数表和列联表、相关及检验、t检验等)--------------------------------------------------------------------#1.1描述性统计分析#####例子:通过sapply()#定义一个函数,其中自变量为x,这里选择不忽视缺失值mysta......
  • 数据分析方法论,统计分析方法论与营销管理常用分析方法论的介绍
    数据分析方法论重点包括两块,一块是统计分析方法论:描述统计、假设检验、相关分析、方差分析、回归分析、聚类分析、判别分析、主成分与因子分析、时间序列分析、决策树等;一块是营销管理常用分析方法论:SWOT、4P、PEST、SMART、5W2H、Userbehavior等。一、统计分析方法论:1.描述统计(Des......
  • sysaux表空间异常增长之统计信息数据未自动清理
    首先还是去查sysaux表空间中占用空间最多的组件和对象selectOCCUPANT_NAME,OCCUPANT_DESC,SPACE_USAGE_KBYTES/1024USAGE_MBfromV$SYSAUX_OCCUPANTSorderbySPACE_USAGE_KBYTESdesc;SELECTD.SEGMENT_NAME,D.SEGMENT_TYPE,SUM(BYTES)/1024/1024SIZE_MBFROMDBA_SEGME......
  • 【敲敲云】零代码实战,主子表汇总统计—免费的零代码产品
    近来很多朋友在使用敲敲云时,不清楚如何使用主子表,及如何在主表中统计子表数据;下面我们就以《订单》表及《订单明细》表来设计一下吧,用到的组件有“设计子表”、“公式”、“汇总”等。《订单》表展示总金额=订单明细中“小计”求和小计=单价*数量首选我们打开敲敲云......
  • Django中TruncMonth截取日期使用方法,按月统计
    将原来的年月日按照月份来截取统计数据,具体参考如下官方示例:-官方提供fromdjango.db.models.functionsimportTruncMonthArticle.objects.annotate(month=TruncMonth('timestamp'))#Truncatetomonthandaddtoselectlist.values('month')#GroupBymonth.anno......
  • :)深度学习模型如何统计params量-|
    :)深度学习模型如何统计params量-|1大概统计已知模型大小,如312M计算为312000000Bytes,浮点数据一个参数占4个字节,importtransformersimporttorchimportosfromtransformersimportGPT2TokenizerFast,GPT2LMHeadModel,GPT2ConfigfromtransformersimportBertT......