首页 > 其他分享 >sun-2023-DeFeeNet-CVPR

sun-2023-DeFeeNet-CVPR

时间:2023-04-25 09:04:57浏览次数:44  
标签:deviation mathbf sun prediction motion CVPR DeFeeNet round

# DeFeeNet: Consecutive 3D Human Motion Prediction with Deviation Feedback #paper


1. paper-info

1.1 Metadata

  • Author:: [[Xiaoning Sun]], [[Huaijiang Sun]], [[Bin Li]], [[Dong Wei]], [[Weiqing Li]], [[Jianfeng Lu]]
  • 作者机构:: njust.edu.cn
  • Keywords:: #HMP
  • Journal:: #CVPR
  • Date:: [[2023-04-14]]
  • 状态:: #Doing

Sun X, Sun H, Li B, et al. DeFeeNet: Consecutive 3D Human Motion Prediction with Deviation Feedback[J]. arXiv preprint arXiv:2304.04496, 2023.

1.2. Abstract

Let us rethink the real-world scenarios that require human motion prediction techniques, such as human-robot collaboration. Current works simplify the task of predicting human motions into a one-off process of forecasting a short future sequence (usually no longer than 1 second) based on a historical observed one. However, such simplification may fail to meet practical needs due to the neglect of the fact that motion prediction in real applications is not an isolated observe then predict unit, but a consecutive process composed of many rounds of such unit, semi-overlapped along the entire sequence. As time goes on, the predicted part of previous round has its corresponding ground truth observable in the new round, but their deviation in-between is neither exploited nor able to be captured by existing isolated learning fashion. In this paper, we propose DeFeeNet, a simple yet effective network that can be added on existing one-off prediction models to realize deviation perception and feedback when applied to consecutive motion prediction task. At each prediction round, the deviation generated by previous unit is first encoded by our DeFeeNet, and then incorporated into the existing predictor to enable a deviation-aware prediction manner, which, for the first time, allows for information transmit across adjacent prediction units. We design two versions of DeFeeNet as MLP-based and GRU-based, respectively. On Human3.6M and more complicated BABEL, experimental results indicate that our proposed network improves consecutive human motion prediction performance regardless of the basic model.


2. Story

随着时间的推移,人体姿势可能变得难以预测,目前的工作将实际需求抽象为一个简化的任务,即学习“观察几帧然后预测后续帧”,预测长度大多设置为≤1秒。将该简易的过程看做一个“observe and predict”单元,然而,这个单元实际上并不适用于需要在人-机器人/机器长期共存期间对人类进行连续观察和预测的现实。虽然从直观上看,沿着时间逐轮滑动这样的单元可以大致满足连续预测的需要,但一个被忽略的事实是每一轮预测单元都是以半重叠结构排列的(见Fig1)。


Fig.1

为了能够检测到预测时候的偏差,作者利用半重叠的多轮单元结构,提供了一种在相邻预测单元之间传递偏差反馈的方式。


3. Methods

3.1 问题定义

a motion sequence \(S=[s_1,s_2,..,s_L]\) ,在\(S\)中,定义多个round,每一个round的长度为\(N+T\),最开始的round\(R_1=s_{1:N+T}\);第\(r\)个 round \(R_r=s_{1+(r-1)T:N+T+(r-1)T}\)

其中\(N>=T\), \(R=[R_1,R_2,...,R_r,...]\),\(R_r=[X_{r, Y_r}]=[x_{r,1},...,x_{r,N},y_{r,1},...,y_{r,T}]\) ,可以推导出\(x_{r,N-T:N}=y_{r-1,1:T}\)

每一轮的偏差预测可以用公式表示为:

\[D_{r-1}=f_d(x_{r,N-T:N},\hat{y}_{r-1,1:T}) \]

3.2 Deviation-Aware Prediction


Fig.1 模型流程说明
deviation: $$\begin{aligned} \mathbf{D}_{r-1} & =f_{d}\left(\mathbf{x}_{r, N-T: N}, \hat{\mathbf{y}}_{r-1,1: T}\right) \\ & =v\left(\mathbf{x}_{r, N-T: N}\right)-v\left(\hat{\mathbf{y}}_{r-1,1: T}\right) \in \mathbb{R}^{K \times(T-1)} . \end{aligned}$$ output: $$\mathbf{Y}_{r}=\varphi\left(\mathbf{X}_{r}, \mathbf{D}_{r-1}\right)$$ 其中文中提出的`DeFeeNet`模型作用于$D_r-1$,然后加入原baseline,得到最后的输出。

3.3 Architecture


Fig.2 DeFeeNet模型结构

提出了两种模型,一种基于MLP,一种基于GRU。

4. Experiments

  • datasets
    • HUman3.6M
    • BABEL :新提出的数据库,包含语义标签。
  • Evaluation Metric
    • MPJPE

5. 总结

本文的思想很简单,通过不断反馈的方式,不断修正错误。

标签:deviation,mathbf,sun,prediction,motion,CVPR,DeFeeNet,round
From: https://www.cnblogs.com/guixu/p/17351521.html

相关文章

  • 猛读论文13 |【CVPR 2022 UDA】Unleashing Potential of Unsupervised Pre-Training w
    动机解决(1)对比学习管道中的增强通常会扭曲人物图像中的判别线索(2)细粒度的局部特征人物图像尚未得到充分探索。 思路    方法 ......
  • 猛读论文6 |【CVPR 2022】Camera-Conditioned Stable Feature Generation for Isolate
    用于孤立摄像机监督行人重识别的摄像机条件稳定特征生成动机常规ReID,对于一个ID,在不同摄像头拍摄的图片上提取跨相机视图不变特征而ISCS情况下,无法做到同一个ID采集到不同摄像头图片由于跨相机样本在人体Re-ID模型训练中起着重要作用,而在ISCS设置下不存在此类配对图像,因......
  • JDK升级到1.7后 com.sun.image.codec.jpeg不存在
    源:http://stackoverflow.com/questions/8015291/how-to-replace-com-sun-image-codec-jpeg-jpegimageencoder-in-this-code评:JDK升级到1.7后编译的时候会出现com.sun.image.codec.jpegjar不存在需要修改程序代码将原来的[java]viewplaincopyprint?在CODE上查看代码片派......
  • 2020CVPR_Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
    1.motivation收到图像编辑软件的启发2. Contribution(1)无监督(2)设计图像高阶曲线适应适合像素级映射,通过迭代自身(3)设计了四个无参考损失函数3.Network 3.1DCE-NetDCE-Net:是由6个Conv2D(3x3)+relu,分别输出为x1,x2, x3,x4,x5,x6,最后的卷积由Conv2d(3x3)+tan激......
  • Java Magic. Part 4: sun.misc.Unsafe(译)
    JavaMagic.Part4:sun.misc.UnsafeJavaisasafeprogramminglanguageandpreventsprogrammerfromdoingalotofstupidmistakes,mostofwhichbasedonmemorymanagement.But,thereisawaytodosuchmistakesintentionally,usingUnsafeclass.Java是一种......
  • CVPR 2023 深挖无标签数据价值!SOLIDER:用于以人为中心的视觉
    前言 在现今的各种视觉智能场景中,对图像中人的理解和分析一直都是一个非常重要的环节。SOLIDER是CVPR2023录用的一篇来自于阿里达摩院的工作,是一个专门用于支持各种人体任务的视觉预训练模型。它提供一种自监督训练方式,让我们可以充分利用市面上大量的人体无标注数据训练出一......
  • CVPR 2023|21 篇数据集工作汇总(附打包下载链接)
    前言 本文汇总了21篇CVPR2023中有关数据集的工作,附下载链接。本文转载自极市平台仅用于学术分享,若侵权请联系删除欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。CV各大方向专栏与各个部署框架最全教程整理计算机视觉入门1v......
  • CVPR 2023|两行代码高效缓解视觉Transformer过拟合,美图&国科大联合提出正则化方法DropK
    前言 美图影像研究院(MTLab)与中国科学院大学突破性地提出正则化方法DropKey,用于缓解VisionTransformer中的过拟合问题。该方法通过在注意力计算阶段随机drop部分Key以鼓励网络捕获目标对象的全局信息,从而避免了由过于聚焦局部信息所引发的模型偏置问题,继而提升了基于Tra......
  • CVPR 2023 | 单阶段半监督目标检测SOTA:ARSL
    本文提出了针对单阶段半监督目标检测任务的Ambiguity-ResistantSemi-supervisedLearning(ARSL)算法,创新地提出了两个通用的单阶段半监督检测模块:Joint-ConfidenceEstimation(JCE)和Task-SeparationAssignment(TSA)。JCE通过联合分类和定位任务的置信度评估伪标签质量。TSA基于教师模......
  • Ubuntu 12.04 – install sun jdk 6-7
    UbuntuGNU/Linux12.04LTS(PrecisePangolin)released.IwantedtomanuallyinstalltheSunJDK6and7onUbuntu.UpdatedforUbuntuGNU/Linux13.04(RaringRi......