二次型的范畴论定义
考虑这样一个范畴\(S_n\),由一些free abelian group of rank \(n\) \(E\)组成
Definition of free abelian group
一个有basis的abelian group. 这里basis就是那个基的意思,every element could be uniquely expressed as an linear combination of finitely many basis elements.
例如lattice这样的
这些\(E\)需要有一个symmetric binear form \(E\times E\rightarrow \mathbb Z\),denoted by \((x,y)\mapsto x.y\), such that
- 从\(E\)到\(\mathrm{Hom}(E,\mathbb Z)\) defined by the form \(x.y\)的同态是一个isomorphism
Ref. Bourbaki, Alg., chap IX.2 prop 3有一个等价的定义?
- 考虑\(E\)的一个基\((e_i)\),如果\(a_{ij}=e_i.e_j\),\(A=(a_{ij})\)的行列式为\(\pm 1\)
The notion of isomorphism of two objects \(E,E'\in S_n\) is defined in an obvious way实际上就是通用定义XD
我们记为\(E\simeq E'\). 然后我们显然也可以引入一个\(S=\cup_{n=0,1,\dots} S_n\).
假如我们考虑某个\(E\in S_n\),在\(x\mapsto x.x\)下\(E\)会在\(\mathbb{Z}\)上成为一个quadratic module. 在这一语境下,设\((e_i)\)是对应的一组基,然后\(f(x)=x.x\)可以写作
\[\begin{align*} f(x)&= \sum\limits_{ij}a_{i,j}x_ix_j\\ &= \sum\limits_{i}a_{ii}x_i^2+2\sum\limits_{i<j}a_{ij}x_ix_j\\ \end{align*} \]- 这里非对角项的\(a_{ij}\)的系数是偶数
- 前面提到过\(A\)的discrement是\(\pm 1\)
- 换基使用\(B^TAB\) with \(B\in \mathrm{GL}(n,\mathbb Z)\)
这个等价关系是在整数环上定义的,比在\(\mathbb Q\)上面定义更好点
二次型范畴的操作
\(E\oplus E'\)表示直和,使用bilinear form. 对于\(x,y\in E\), \(x',y'\in E'\),
\[(x+x').(y+y')=x.y+x'.y' \]这个操作实际上对应于orthogonal direct sum. 记号也是\(\hat\oplus\). 我们还可以定义tensor products和exterior powers \(\land^m E\).
Bourbaki, loc cit., no 9
Invariants
rank of \(E\)
\(E\in S_n\), then \(n\) is the rank of \(E\)(也就是说考虑对应free abelian group的rank)
signature and index
\(E\in S\), \(V=E\otimes\mathbb{R}\) the \(\mathbb{R}\)-vector space,生成方式就是对\(E\)的scalers从原来的\(\mathbb{Z}\)扩展到\(\mathbb{R}\). 这里\(V\)上二次型的signature\((r,s)\) 将会对应一个
\[\tau(E)=r-s \]称为\(E\)的index.显然,
\[-r(E)\leq\tau(E)\leq r(E)\text{ and }r(E)\equiv\tau(E)\pmod{2} \]as \(r+s=r(E)\). \(E\)是正定definite阵当且仅当\(\tau(E)=\pm r(E)\). 也就是\(x.x\)的sign是常数(\(r=0\) or \(s=0\)). 其他情况下不是definite阵.
discriminant of \(E\) 记为\(d(E)\).考虑\(V=E\otimes \mathbb R\),signature是\((r,s)\),\(d(E)\)的符号是\((-1)^s\),所以可以解得
\[d(E)=(-1)^{(r(E)-\tau(E))/2} \]\(E\in S\) is even if the quadratic form associated with \(E\) takes only even values.\(\Rightarrow\)输出的都是even. 考虑根据\(E\)的basis定义矩阵\(A\),那么all diagonal terms of \(A\) are even.
假如不是even,那么就是odd(or of type I).
我们考虑\(\bar{E}=E/2E\):reduction of \(E\) modulo \(2\). 这相当于在\(F_2=\mathbb Z/2\mathbb Z\)上一个\(r(E)\)维的向量空间。这上面的form \(\bar x.\bar y\)同样是对称的,而且discriminant\(=\pm 1=1\).甚至是additive的:
\[(\bar x+\bar y).(\bar x+\bar y)=\bar x.\bar x+\bar y.\bar y \]这告诉我们\(\bar x.\bar y\)是\(\bar E\)的dual的元素.
然而\(\bar x.\bar y\)是nondegenerate的,这意味着这定义了一个从\(\bar E\)到其dual的isomorphism. 在模\(2\)下存在一个canonical element(考虑自然映射的商集) \(\bar u\in\bar E\) s.t. (考虑在上一节Prop 2.的地方构造exact sequence的时候)
回到\(E\)里面来看,我们得到了一个在模2意义下唯一的\(u\in E\) s.t.
\[u.x\equiv x.x\pmod{2} \]for all \(x\in E\).
考虑\(u.u\),替换成\(u+2x\),则
\[(u+2x).(u+2x)=u.u+4(u.x+x.x)\equiv u.u\pmod{8} \]因为\(u.x+x.x\)在modulo \(2\)意义下是\(0\).
所以这里\(u.u\)在modulo \(8\)意义下也是不变量,记为\(\sigma(E)\). 假如\(E\)是type II的,\(\bar x.\bar x\)是\(0\),不妨取\(u=0\),则\(\sigma(E)=0\).
考虑质数\(p\),令\(V_p=E\otimes Q_p\)作为\(Q_p\) vector-space(前面提到过很多次!)这个\(\epsilon(V_p)=\pm 1\):
\[\epsilon(e)=\prod_{i<j}(a_i,a_j) \]是fortiori(显然是)一个\(E\)中的不变量。
接下来的一些结果依赖于\(E\)是 of type II以及\(E_1\), \(E_2\)是type II.
Example
\(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\)
考虑一个有bilinear form \(xy\)的整数线性空间(e.g. \(\mathbb Z\), \(\mathbb Z/p\mathbb Z\))二次型是\(+x^2\),当然也可以全加个负号. 正号的是\(I_+\),反之\(I_-\)
考虑\(sI_+\oplus tI_-\),二次型如\(\sum\limits_{i=1}^sx_i^2-\sum\limits_{j=1}^ty_j^2\).
除了\((s,t)=(0,0)\)外都是of type I.
\(\begin{pmatrix}0 & 1 \\ 1 & 0\end{pmatrix}\)
如上做\(U\in S_2\),quadratic form是\(2x_1x_2\),\(U\) 是of type II.
\(n=4k\)
\(E_0\) element of \(S_n\) isomorphic to \(nI_+\)
\(E_1\) submodule of \(E_0\) from \(x.x\equiv 0\pmod{2}\).
考虑在\(E_1\)下\(V\)和\(e\)生成的submodule(用这个\(V\)的二次型)有\(2e\in E_1\), \(e\in E_1\),所以又是一个扩张维数是\(2\).
考虑\(x\in E\)的充要条件
\[2x_i\in\mathbb Z,x_i-x_j\in\mathbb Z,\sum\limits_{i=1}^n x_i\in2\mathbb Z \]这时候有\(x.e\in \mathbb Z\).考虑到\(e.e=k=n/4\),\(x.y\) takes integral values on \(E\).
实际上\(E_1\) 与\(E_0\)有相同的index\(\tau(E_1)=\tau(E_0)\),discriminant of \(E\)等于\(E_0\),即\(+1\). 这里的quadratic module \(E\)是\(S_n=S_{4k}\)的一个元素,记为\(\Gamma_n\)。假如\(n=8m\)的情况,\(e.e=k\) is even, \(x.x\) is even for all \(x\in E\). 这时候\(\Gamma_{8m}\) is of type II.
\(\Gamma_8\)非常有意思:有\(240\)个元素\(x\in\Gamma_8\) s.t. \(x.x=2\)(这堆东西互相乘是integers,形成李群理论里面的root system of type \(E_8\)).
canonical base = 标准基.
下面这个还挺奇怪的?哦就是一些上面这个满足\(x.x=2\)的具体例子
group \(K(S)\)
stably isomorphic.
定义\(K_+(S)\),利用这个stably isomorphic的等价关系.
进一步我们可以定义\(K(S)\) semigroup \(\rightarrow\) group.
difference of two elements of \(K_+(S)\). 定义方式就是一个pair.
Universal property of \(K(S)\)
\(K(S)\)是这个\(\oplus\)的Grothendieck group of \(S\).
Statement
Th1
\(K(S)\)是free abelian group with basis \((I_+)\) and \((I_-)\).
proof in 3.4
Cor 1
\((r,\tau)\) defines an isomorphism of \(K(S)\) onto the subgroup of \(Z\times Z\) formed of elements ....
Cor 2
stably isomorphic的\(E\)和\(E'\)充要条件是same rank and same index. 不过不一定\(E\cong E'\).
这里有个例子.
Th 2.
\(\sigma(E)\equiv \tau(E)\pmod{8}\)
Proof.
标签:Serre,Chapter,教程,bar,tau,sum,group,type,mathbb From: https://www.cnblogs.com/wdmath/p/17351059.html