首页 > 其他分享 >5.深度学习计算

5.深度学习计算

时间:2023-04-22 15:48:41浏览次数:45  
标签:layers Dense keras self 学习 计算 深度 tf net

层和块

import tensorflow as tf
import numpy as np

net = tf.keras.models.Sequential([
    tf.keras.layers.Dense(256, activation=tf.nn.relu),
    tf.keras.layers.Dense(10)
])

X = tf.random.uniform((2, 20))

net(X)

"""
<tf.Tensor: shape=(2, 10), dtype=float32, numpy=
array([[-0.04290408,  0.16185862,  0.33581334, -0.4772908 , -0.43052262,
        -0.2755071 , -0.01364495, -0.01924989, -0.25683147,  0.14087945],
       [ 0.08288381,  0.25238007,  0.2683103 , -0.31998044, -0.1930172 ,
        -0.47576165, -0.0759996 ,  0.15379383, -0.42053652,  0.01198682]],
      dtype=float32)>
"""

自定义块

class MLP(tf.keras.Model):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Model的构造函数来执行必要的初始化
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params
        super().__init__()
        # Hidden layer
        self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)
        self.out = tf.keras.layers.Dense(units=10)  # Output layer
        
    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def call(self, X):
        return self.out(self.hidden(X))
    
net = MLP()
net(X)

"""
<tf.Tensor: shape=(2, 10), dtype=float32, numpy=
array([[-0.26962578, -0.11410601,  0.07386565,  0.14375813, -0.108279  ,
         0.26483834, -0.03660164, -0.08067364,  0.10585064,  0.24364512],
       [-0.24622872, -0.12058591,  0.06265444, -0.04843516, -0.0802037 ,
        -0.12859441, -0.08167031, -0.00575764,  0.0458674 ,  0.09763081]],
      dtype=float32)>
"""

顺序块

class MySequential(tf.keras.Model):
    def __init__(self, *args):
        super().__init__()
        self.modules = []
        for block in args:
            # 这里block是tf.keras.layers.Layer子类的一个实例
            self.modules.append(block)
            
    def call(self, X):
        for module in self.modules:
            X = module(X)
        return X
    
net = MySequential(
    tf.keras.layers.Dense(units=256, activation=tf.nn.relu),
    tf.keras.layers.Dense(10)
)

net(X)

"""
<tf.Tensor: shape=(2, 10), dtype=float32, numpy=
array([[-1.17208004e-01, -7.67507404e-03,  4.20906067e-01,
         2.63195217e-01,  6.44621402e-02, -1.11673675e-01,
         8.89514387e-02, -1.46050304e-01, -6.07277453e-02,
        -3.42084467e-02],
       [ 2.96452016e-01,  1.08508758e-01,  3.60923648e-01,
         3.58375251e-01,  1.96460947e-01, -9.69487429e-02,
        -3.03983688e-04, -4.94183600e-01,  5.83917871e-02,
         8.36815685e-02]], dtype=float32)>
"""

在前向传播函数中执行代码

class FixedHiddenMLP(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.flatten = tf.keras.layers.Flatten()
        # 使用tf.constant函数创建的随机权重参数在训练期间不会更新(即为常量参数)
        self.rand_weight = tf.constant(tf.random.uniform((20, 20)))
        self.dense = tf.keras.layers.Dense(20, activation=tf.nn.relu)
        
    def call(self, inputs):
        X = self.flatten(inputs)
        # 使用创建的常量参数以及relu和matmul函数
        """
        我们实现了一个隐藏层, 其权重(self.rand_weight)在实例化时被随机初始化,之后为常量。 
        这个权重不是一个模型参数,因此它永远不会被反向传播更新。 然后,神经网络将这个固定层的输出通过一个全连接层。
        """
        X = tf.nn.relu(tf.matmul(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.dense(X)
        # 控制流
        while tf.reduce_sum(tf.math.abs(X)) > 1:
            X /= 2
        return tf.reduce_sum(X)
    
net = FixedHiddenMLP()
net(X)

"""
<tf.Tensor: shape=(), dtype=float32, numpy=0.58207244>
"""

class NestMLP(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.net = tf.keras.Sequential()
        self.net.add(tf.keras.layers.Dense(64, activation=tf.nn.relu))
        self.net.add(tf.keras.layers.Dense(32, activation=tf.nn.relu))
        self.dense = tf.keras.layers.Dense(16, activation=tf.nn.relu)
        
    def call(self, inputs):
        return self.dense(self.net(inputs))
    
chimera = tf.keras.Sequential()
chimera.add(NestMLP())
chimera.add(tf.keras.layers.Dense(20))
chimera.add(FixedHiddenMLP())
chimera(X)

"""
<tf.Tensor: shape=(), dtype=float32, numpy=0.8986759>
"""

参数访问

net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(4, activation=tf.nn.relu),
    tf.keras.layers.Dense(1)
])

X = tf.random.uniform((2, 4))
net(X)

"""
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[0.1116072 ],
       [0.02088086]], dtype=float32)>
"""

print(net.layers[2].weights)

"""
[<tf.Variable 'dense_14/kernel:0' shape=(4, 1) dtype=float32, numpy=
array([[ 0.03134096],
       [ 0.51048875],
       [ 0.20824826],
       [-0.5918182 ]], dtype=float32)>, <tf.Variable 'dense_14/bias:0' shape=(1,) dtype=float32, numpy=array([0.], dtype=float32)>]
"""

print(type(net.layers[2].weights[1]))
print(net.layers[2].weights[1])
print(tf.convert_to_tensor(net.layers[2].weights[1]))

"""
<class 'tensorflow.python.ops.resource_variable_ops.ResourceVariable'>
<tf.Variable 'dense_14/bias:0' shape=(1,) dtype=float32, numpy=array([0.], dtype=float32)>
tf.Tensor([0.], shape=(1,), dtype=float32)
"""

print(net.layers[1].weights)
print(net.get_weights())

"""
[<tf.Variable 'dense_13/kernel:0' shape=(4, 4) dtype=float32, numpy=
array([[-0.3207549 ,  0.08903289,  0.43716985,  0.1183672 ],
       [-0.35017866, -0.21974826, -0.167526  , -0.52557135],
       [ 0.6917662 ,  0.45998472,  0.09678668,  0.5109622 ],
       [ 0.7497603 , -0.71563303,  0.4555226 , -0.4751711 ]],
      dtype=float32)>, <tf.Variable 'dense_13/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>]
[array([[-0.3207549 ,  0.08903289,  0.43716985,  0.1183672 ],
       [-0.35017866, -0.21974826, -0.167526  , -0.52557135],
       [ 0.6917662 ,  0.45998472,  0.09678668,  0.5109622 ],
       [ 0.7497603 , -0.71563303,  0.4555226 , -0.4751711 ]],
      dtype=float32), array([0., 0., 0., 0.], dtype=float32), array([[ 0.03134096],
       [ 0.51048875],
       [ 0.20824826],
       [-0.5918182 ]], dtype=float32), array([0.], dtype=float32)]
"""

net.get_weights()[1]  # 偏置项参数

"""
array([0., 0., 0., 0.], dtype=float32)
"""

def block1(name):
    return tf.keras.Sequential([
        # X是二维的,也就是说没有batch的维度,因此其实没有起作用,经过flatten维度不变
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(4, activation=tf.nn.relu, name=name)
    ])
    
def block2():
    net = tf.keras.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add(block1(name=f'block-{i}'))
    return net

rgnet = tf.keras.Sequential()
rgnet.add(block2())
rgnet.add(tf.keras.layers.Dense(1))
rgnet(X)

"""
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[0.],
       [0.]], dtype=float32)>
"""

print(rgnet.summary())  # 4*(4+1) + 4*(4+1) + 4*(4+1) + 4*(4+1) + (4+1)

"""
Model: "sequential_16"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
sequential_17 (Sequential)   (2, 4)                    80        
_________________________________________________________________
dense_17 (Dense)             (2, 1)                    5         
=================================================================
Total params: 85
Trainable params: 85
Non-trainable params: 0
_________________________________________________________________
None
"""

rgnet.layers[0].layers[1].layers[1].weights[1]

"""
<tf.Variable 'block-1/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>
"""

参数初始化

#  内置初始化
net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(
        4, 
        activation=tf.nn.relu, 
        kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.01),
        bias_initializer=tf.zeros_initializer()
    ),
    tf.keras.layers.Dense(1)
])

net(X)

"""
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[ 0.0004508 ],
       [-0.00056325]], dtype=float32)>
"""

net.weights[0], net.weights[1]

"""
(<tf.Variable 'dense_18/kernel:0' shape=(4, 4) dtype=float32, numpy=
 array([[ 0.00936705, -0.00546127,  0.00297332,  0.00961739],
        [ 0.00299437, -0.01580729, -0.00122335,  0.00139136],
        [-0.00579328,  0.01332515,  0.01399793,  0.00444172],
        [-0.00757714, -0.01153165, -0.00556281, -0.00651804]],
       dtype=float32)>,
 <tf.Variable 'dense_18/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>)
"""

net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(
        4,
        activation=tf.nn.relu,
        kernel_initializer=tf.keras.initializers.Constant(1),
        bias_initializer=tf.zeros_initializer()
    ),
    tf.keras.layers.Dense(1)
])

net(X)

"""
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[1.6196353],
       [0.4654615]], dtype=float32)>
"""

net.weights[0], net.weights[1]

"""
(<tf.Variable 'dense_20/kernel:0' shape=(4, 4) dtype=float32, numpy=
 array([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]], dtype=float32)>,
 <tf.Variable 'dense_20/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>)
"""

net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=tf.keras.initializers.GlorotUniform()),
    tf.keras.layers.Dense(1, kernel_initializer=tf.keras.initializers.Constant(1))
])
net(X)

"""
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[1.1036941 ],
       [0.24121845]], dtype=float32)>
"""

print(net.layers[1].weights[0])
print(net.layers[2].weights[0])

"""
<tf.Variable 'dense_22/kernel:0' shape=(4, 4) dtype=float32, numpy=
array([[ 0.3928185 ,  0.19452113, -0.6222625 ,  0.5098383 ],
       [ 0.7411222 , -0.6079396 ,  0.7660083 ,  0.3188972 ],
       [-0.20573944, -0.5214578 , -0.59844893, -0.67086643],
       [-0.29475045,  0.20483035, -0.06896585,  0.02373922]],
      dtype=float32)>
<tf.Variable 'dense_23/kernel:0' shape=(4, 1) dtype=float32, numpy=
array([[1.],
       [1.],
       [1.],
       [1.]], dtype=float32)>
"""

# 自定义初始化
"""
在这里,我们定义了一个Initializer的子类, 并实现了__call__函数。 该函数返回给定形状和数据类型的所需张量。
"""
class MyInit(tf.keras.initializers.Initializer):
    def __call__(self, shape, dtype=None):
        data = tf.random.uniform(shape, -10, 10, dtype=dtype)
        factor = tf.abs(data) >= 5
        factor = tf.cast(factor, tf.float32)
        return data * factor
    
net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=MyInit()),
    tf.keras.layers.Dense(1)
])
net(X)

"""
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[2.4390702],
       [1.3394781]], dtype=float32)>
"""

print(net.layers[1].weights[0])

"""
<tf.Variable 'dense_24/kernel:0' shape=(4, 4) dtype=float32, numpy=
array([[-0.       ,  9.192398 ,  8.276976 ,  0.       ],
       [-9.562297 ,  0.       ,  6.1546516,  0.       ],
       [ 8.504074 ,  0.       ,  0.       , -7.715745 ],
       [-8.956351 ,  0.       ,  7.2680073,  0.       ]], dtype=float32)>
"""

# 注意,我们始终可以直接设置参数
net.layers[1].weights[0][:].assign(net.layers[1].weights[0] + 1)
net.layers[1].weights[0][0, 0].assign(42)
net.layers[1].weights[0]

"""
<tf.Variable 'dense_24/kernel:0' shape=(4, 4) dtype=float32, numpy=
array([[42.       , 12.192398 , 11.276976 ,  3.       ],
       [-6.562297 ,  3.       ,  9.154652 ,  3.       ],
       [11.504074 ,  3.       ,  3.       , -4.715745 ],
       [-5.9563513,  3.       , 10.268007 ,  3.       ]], dtype=float32)>
"""

参数绑定

"""
有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。
"""
# tf.keras的表现有点不同,它会自动删除重复层
shared = tf.keras.layers.Dense(4, activation=tf.nn.relu)
net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    shared,
    shared,
    tf.keras.layers.Dense(1)
])
net(X)

"""
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[-0.02321801],
       [ 0.01264826]], dtype=float32)>
"""

# 检查参数是否不同
print(len(net.layers) == 3)  # 只剩下flatten,shared,dense三个层

"""
True
"""

延后初始化

net = tf.keras.models.Sequential([
    tf.keras.layers.Dense(256, activation=tf.nn.relu),
    tf.keras.layers.Dense(10)
])

"""
因为输入维数是未知的,所以网络不可能知道输入层权重的维数。 因此,框架尚未初始化任何参数,我们通过尝试访问以下参数进行确认
"""
[net.layers[i].get_weights() for i in range(len(net.layers))]

"""
[[], []]
"""

X = tf.random.uniform((2, 20))
net(X)

"""
<tf.Tensor: shape=(2, 10), dtype=float32, numpy=
array([[-0.11386063, -0.00487196,  0.04176567,  0.1878469 ,  0.10872965,
        -0.16000062, -0.05067926, -0.07579428,  0.08672158, -0.10469792],
       [-0.15152982, -0.07497732,  0.15857704,  0.13723594,  0.32058844,
        -0.15092999,  0.09441049, -0.10225398,  0.17057276, -0.02920698]],
      dtype=float32)>
"""

[w.shape for w in net.get_weights()]

"""
[(20, 256), (256,), (256, 10), (10,)]
"""

不带参数的层

class CenteredLayer(tf.keras.Model):
    def __init__(self):
        super().__init__()
        
    def call(self, inputs):
        return inputs - tf.reduce_mean(inputs)
    
layer = CenteredLayer()
layer(tf.constant([1, 2, 3, 4, 5]))

"""
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([-2, -1,  0,  1,  2])>
"""

net = tf.keras.Sequential([tf.keras.layers.Dense(256), CenteredLayer()])

Y = net(tf.random.uniform((4, 8)))
tf.reduce_mean(Y)

"""
<tf.Tensor: shape=(), dtype=float32, numpy=0.0>
"""

带参数的层

class MyDense(tf.keras.Model):
    def __init__(self, units):
        super().__init__()
        self.units = units
        
    def build(self, X_shape):
        self.weight = self.add_weight(name='weight', shape=[X_shape[-1], self.units], initializer=tf.random_normal_initializer())
        self.bias = self.add_weight(name='bias', shape=[self.units], initializer=tf.zeros_initializer())
        
    def call(self, X):
        linear = tf.matmul(X, self.weight) + self.bias
        return tf.nn.relu(linear)
    
dense = MyDense(3)
dense(tf.random.uniform((2, 5)))
dense.get_weights()

"""
[array([[ 0.00817673,  0.02359941, -0.02445445],
        [-0.01430137,  0.07688206,  0.00117064],
        [-0.01817204, -0.00838405,  0.05307764],
        [ 0.05277959, -0.00456494,  0.01542496],
        [-0.01230057,  0.05387021, -0.00627117]], dtype=float32),
 array([0., 0., 0.], dtype=float32)]
"""

dense(tf.random.uniform((2, 5)))

"""
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0.03652133, 0.06277972, 0.00342073],
       [0.00039518, 0.0822235 , 0.02796303]], dtype=float32)>
"""

net = tf.keras.models.Sequential([MyDense(8), MyDense(1)])
net(tf.random.uniform((2, 64)))

"""
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[0.01318499],
       [0.        ]], dtype=float32)>
"""

加载和保存张量

x = tf.range(4)
np.save('x-file.npy', x)

x2 = np.load('x-file.npy', allow_pickle=True)
x2

"""
array([0, 1, 2, 3])
"""

y = tf.zeros(4)
np.save('xy-files.npy', [x, y])
x2, y2 = np.load('xy-files.npy', allow_pickle=True)
(x2, y2)

"""
(array([0., 1., 2., 3.]), array([0., 0., 0., 0.]))
"""

mydict = {'x': x, 'y': y}
np.save('mydict.npy', mydict)
mydict2 = np.load('mydict.npy', allow_pickle=True)
mydict2

"""
array({'x': <tf.Tensor: shape=(4,), dtype=int32, numpy=array([0, 1, 2, 3])>, 'y': <tf.Tensor: shape=(4,), dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>},
      dtype=object)
"""

class MLP(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.flatten = tf.keras.layers.Flatten()
        self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)
        self.out = tf.keras.layers.Dense(units=10)
        
    def call(self, inputs):
        x = self.flatten(inputs)
        x = self.hidden(x)
        return self.out(x)
    
net = MLP()
X = tf.random.uniform((2, 20))
Y = net(X)
net.save_weights('mlp.params')
clone = MLP()
clone.load_weights('mlp.params')

"""
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x2688525d7c0>
"""

Y_clone = clone(X)
Y_clone == Y

"""
<tf.Tensor: shape=(2, 10), dtype=bool, numpy=
array([[ True,  True,  True,  True,  True,  True,  True,  True,  True,True], [ True,  True,  True,  True,  True,  True,  True,  True,  True, True]])>
"""

GPU

!nvidia-smi

"""
Sat Apr 22 14:38:27 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 526.47       Driver Version: 526.47       CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ... WDDM  | 00000000:01:00.0  On |                  N/A |
|  0%   47C    P8    30W / 350W |  23905MiB / 24576MiB |      1%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      3240    C+G   ...me\Application\chrome.exe    N/A      |
|    0   N/A  N/A      7176    C+G   C:\Windows\explorer.exe         N/A      |
|    0   N/A  N/A      7532    C+G   ...7.3-Beta-x64\Snipaste.exe    N/A      |
|    0   N/A  N/A      8276    C+G   ...n1h2txyewy\SearchHost.exe    N/A      |
|    0   N/A  N/A      8316    C+G   ...cw5n1h2txyewy\LockApp.exe    N/A      |
|    0   N/A  N/A      9148    C+G   ...artMenuExperienceHost.exe    N/A      |
|    0   N/A  N/A     11064    C+G   ...2txyewy\TextInputHost.exe    N/A      |
|    0   N/A  N/A     11788    C+G   ...ge\Application\msedge.exe    N/A      |
|    0   N/A  N/A     12380    C+G   ...perience\NVIDIA Share.exe    N/A      |
|    0   N/A  N/A     12668    C+G   ...perience\NVIDIA Share.exe    N/A      |
|    0   N/A  N/A     13468    C+G   ...lPanel\SystemSettings.exe    N/A      |
|    0   N/A  N/A     13956    C+G   ...wekyb3d8bbwe\Video.UI.exe    N/A      |
|    0   N/A  N/A     17232    C+G   ...722.39\msedgewebview2.exe    N/A      |
|    0   N/A  N/A     17620      C   ...\envs\python38\python.exe    N/A      |
|    0   N/A  N/A     20240    C+G   ...e\PhoneExperienceHost.exe    N/A      |
|    0   N/A  N/A     20356    C+G   ...oft\OneDrive\OneDrive.exe    N/A      |
+-----------------------------------------------------------------------------+
"""

tf.device('/CPU:0'), tf.device('/GPU:0')

"""
(<tensorflow.python.eager.context._EagerDeviceContext at 0x26882b41c00>,
 <tensorflow.python.eager.context._EagerDeviceContext at 0x26885287cc0>)
"""

len(tf.config.experimental.list_physical_devices('GPU'))

"""
1
"""

import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_virtual_device_configuration(
    gpus[0],
    [
        tf.config.experimental.VirtualDeviceConfiguration(memory_limit=9182),
        tf.config.experimental.VirtualDeviceConfiguration(memory_limit=9182)
    ]
)

len(tf.config.experimental.list_logical_devices('GPU'))

"""
2
"""

def try_gpu(i=0):
    # 如果存在,则返回gpu(i),否则返回cpu()
    if len(tf.config.experimental.list_logical_devices('GPU')) >= i+1:
        return tf.device(f'/GPU:{i}')
    return tf.device('/CPU:0')

def try_all_gpus():
    # 返回所有可用的GPU,如果没有GPU,则返回CPU
    num_gpus = len(tf.config.experimental.list_logical_devices('GPU'))
    devices = [tf.device(f'/GPU:{i}') for i in range(num_gpus)]
    return devices if devices else [tf.device('/CPU:0')]

try_gpu(), try_gpu(10), try_all_gpus()

"""
(<tensorflow.python.eager.context._EagerDeviceContext at 0x17e9ca0d2c0>,
 <tensorflow.python.eager.context._EagerDeviceContext at 0x17e86ac7a80>,
 [<tensorflow.python.eager.context._EagerDeviceContext at 0x17e9ca9e9c0>,
  <tensorflow.python.eager.context._EagerDeviceContext at 0x17e9cac5740>])
vice
x = tf.constant([1, 2, 3])
"""

x = tf.constant([1, 2, 3])
x.device

"""
'/job:localhost/replica:0/task:0/device:GPU:0'
"""

"""
需要注意的是,无论何时我们要对多个项进行操作, 它们都必须在同一个设备上。 
例如,如果我们对两个张量求和, 我们需要确保两个张量都位于同一个设备上, 
否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。
"""
# 存储在GPU上
with try_gpu():
    X = tf.ones((2, 3))
X

"""
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[1., 1., 1.],
       [1., 1., 1.]], dtype=float32)>
"""

with try_gpu(1):
    Y = tf.random.uniform((2, 3))
Y

"""
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0.09042239, 0.88034606, 0.12038887],
       [0.18857598, 0.9658278 , 0.82404184]], dtype=float32)>
"""

with try_gpu(1):
    Z = X
print(X)
print(Z)

"""
tf.Tensor(
[[1. 1. 1.]
 [1. 1. 1.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[1. 1. 1.]
 [1. 1. 1.]], shape=(2, 3), dtype=float32)
"""

Y + Z

"""
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[1.0904224, 1.8803461, 1.1203889],
       [1.188576 , 1.9658278, 1.8240418]], dtype=float32)>
"""

"""
假设变量Z已经存在于第二个GPU上。 如果我们仍然在同一个设备作用域
下调用Z2 = Z会发生什么? 它将返回Z,而不会复制并分配新内存
"""
with try_gpu(1):
    Z2 = Z
Z2 is Z

"""
True
"""

# 类似地,神经网络模型可以指定设备。 下面的代码将模型参数放在GPU上。
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
    net = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
    
"""
WARNING:tensorflow:NCCL is not supported when using virtual GPUs, fallingback to reduction to one device
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1')
"""

net(X)

"""
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[-1.265375],
       [-1.265375]], dtype=float32)>
"""

net.layers[0].weights[0].device, net.layers[0].weights[1].device

"""
('/job:localhost/replica:0/task:0/device:GPU:0',
 '/job:localhost/replica:0/task:0/device:GPU:0')
"""

标签:layers,Dense,keras,self,学习,计算,深度,tf,net
From: https://www.cnblogs.com/lotuslaw/p/17343160.html

相关文章

  • 计算机网络 VRRP和DHCP
    目录 一、vrrp概念二、vrrp工作过程三、vrrp优先级四、vrrp实验五、DHCP概念六、DHCP工作过程七、DHCP实验         一、vrrp概念概念:称虚拟路由器冗余协议,当网关路由器出现故障,一个网段的主机都无法通信,故此vrrp解决问题原理:一组路由器工作......
  • SSM框架学习(1)
    一、Spring为什么要学Spring?Spring在学什么?Spring该怎么学?1、初识Springa.认识springb.spring发展史2、SpringFramework系统架构a.Spring系统架构图系统架构图讲究上层依赖于下层;第一核心大块1、CoreContainer表明Spring是一个用来管理对象的技术,即CoreContainer中装的就是对象;......
  • 阿里云1+X云计算开发与运维实战—— 使用负载均衡实现https与http的混合访问
    实验概述    互联网巨头雅虎官方对外发布消息,承认在2014年的一次黑客袭击中,至少5亿用户的数据信息遭窃。此次事件让我们再次意识到网站安全的重要性,网站加密防护的必要性。我们可以使用HTTPS协议对网站进行全站加密,但是,大部分用户已经习惯直接输入域名(即使用 HTTP 协议)访问网......
  • 阿里云1+X云计算开发与运维实战——负载均衡使用初体验
    本实验通过使用阿里云负载均衡SLB以及对负载均衡SLB后端服务器ECS的权重进行修改,可以快速解决上述的问题。实验目标 完成此实验后,可以掌握的能力有:配置负载均衡SLB的监听规则,并将ECS实例部署到SLB后端;通过设置负载均衡SLB后端服务器ECS的权重值,分配用户访问后端ECS实例的比例。背景......
  • flink学习路线
    1传统架构2大数据架构和流式架构的演变工程3flink优势和不足4flink应用场景5flink基本架构6环境准备,运行环境和开发环境配置,建议使用java,兼容性好7flink编程模型:flink的数据集类型,编程接口,程序结构和数据类型4个维度进行分析。流式处理和批量计算。8flinktableap......
  • Java 计算两个 LocalDateTime 类型的变量之间差的小时数,保留4位小数
    为了计算两个LocalDateTime对象之间相差的小时数,并精确到小数点后4位,您可以使用Duration类。以下是一个示例:importjava.time.LocalDateTime;importjava.time.Duration;publicclassMain{publicstaticvoidmain(String[]args){LocalDateTimea=Loc......
  • SkyWalking的学习之一
    SkyWalking的学习之一前言最近在学习应用调优诊断等内容.现在实际工作中实质上的拆分和微服务在售前阶段所以真正用到链路的地方比较少.但是人生都是要向前看的.想着一方面提高自己.一方面也是为了以后着想.在一个看不到未来和光的地方,要么离开,要么继续深入掘进.......
  • 如何配置一个用于深度学习的 GPU 服务器 [Ubuntu 18.04 LTS 为例]
    一、硬件配置CPUofInteli9-9980XE(18-core36-thread,@3.0-4.4GHz),RAMof128GB(DDR4),GPUofNVIDIARTX2080Ti*4(11GBGDDR6*4),andM.2NVMeSSDof1TB(/homewith256GBasswap),SATA3SSDof2TB(/ssd)andHDDof8TB*2(/dataand/proj).二......
  • django-restful:购物车 学习记录
    购物车就有获取购物车详情加入购物车删除购物记录同样直接使用mixins中的就够了view这里面没有一个陌生的基本都是前面学习过了的classShoppingCartViewset(viewsets.ModelViewSet):"""购物车功能list:获取购物车详情create:......
  • 51单片机学习笔记 STC89CRC (04)数码管和锁存器
    一、数码管 点亮:共阴极给高电平,共阳级给低电平,二进制点亮顺序为  dpgfedcba想要显示1,就可以给0x06, //00000110,bc亮起显示1.0x3F,//"0"0x06,//"1"0x5B,//"2"0x4F,//"3"0x66,//"4"0x6D,//"5"......