首页 > 其他分享 >46 45 | 自增id用完怎么办?

46 45 | 自增id用完怎么办?

时间:2023-04-20 15:24:16浏览次数:47  
标签:自增 46 45 事务 trx InnoDB id row

MySQL里有很多自增的id,每个自增id都是定义了初始值,然后不停地往上加步长。虽然自然数是没有上限的,但是在计算机里,只要定义了表示这个数的字节长度,那它就有上限。比如,无符号整型(unsigned int)是4个字节,上限就是232-1。

既然自增id有上限,就有可能被用完。但是,自增id用完了会怎么样呢?

今天这篇文章,我们就来看看MySQL里面的几种自增id,一起分析一下它们的值达到上限以后,会出现什么情况。

表定义自增值id

说到自增id,你第一个想到的应该就是表结构定义里的自增字段,也就是我在第39篇文章《自增主键为什么不是连续的?》中和你介绍过的自增主键id。

表定义的自增值达到上限后的逻辑是:再申请下一个id时,得到的值保持不变。

我们可以通过下面这个语句序列验证一下:

create table t(id int unsigned auto_increment primary key) auto_increment=4294967295;
insert into t values(null);
//成功插入一行 4294967295
show create table t;
/* CREATE TABLE `t` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4294967295;
*/

insert into t values(null);
//Duplicate entry '4294967295' for key 'PRIMARY'

可以看到,第一个insert语句插入数据成功后,这个表的AUTO_INCREMENT没有改变(还是4294967295),就导致了第二个insert语句又拿到相同的自增id值,再试图执行插入语句,报主键冲突错误。

232-1(4294967295)不是一个特别大的数,对于一个频繁插入删除数据的表来说,是可能会被用完的。因此在建表的时候你需要考察你的表是否有可能达到这个上限,如果有可能,就应该创建成8个字节的bigint unsigned。

InnoDB系统自增row_id

如果你创建的InnoDB表没有指定主键,那么InnoDB会给你创建一个不可见的,长度为6个字节的row_id。InnoDB维护了一个全局的dict_sys.row_id值,所有无主键的InnoDB表,每插入一行数据,都将当前的dict_sys.row_id值作为要插入数据的row_id,然后把dict_sys.row_id的值加1。

实际上,在代码实现时row_id是一个长度为8字节的无符号长整型(bigint unsigned)。但是,InnoDB在设计时,给row_id留的只是6个字节的长度,这样写到数据表中时只放了最后6个字节,所以row_id能写到数据表中的值,就有两个特征:

  1. row_id写入表中的值范围,是从0到248-1;

  2. 当dict_sys.row_id=248时,如果再有插入数据的行为要来申请row_id,拿到以后再取最后6个字节的话就是0。

也就是说,写入表的row_id是从0开始到248-1。达到上限后,下一个值就是0,然后继续循环。

当然,248-1这个值本身已经很大了,但是如果一个MySQL实例跑得足够久的话,还是可能达到这个上限的。在InnoDB逻辑里,申请到row_id=N后,就将这行数据写入表中;如果表中已经存在row_id=N的行,新写入的行就会覆盖原有的行。

要验证这个结论的话,你可以通过gdb修改系统的自增row_id来实现。注意,用gdb改变量这个操作是为了便于我们复现问题,只能在测试环境使用。

图1 row_id用完的验证序列

图2 row_id用完的效果验证

可以看到,在我用gdb将dict_sys.row_id设置为248之后,再插入的a=2的行会出现在表t的第一行,因为这个值的row_id=0。之后再插入的a=3的行,由于row_id=1,就覆盖了之前a=1的行,因为a=1这一行的row_id也是1。

从这个角度看,我们还是应该在InnoDB表中主动创建自增主键。因为,表自增id到达上限后,再插入数据时报主键冲突错误,是更能被接受的。

毕竟覆盖数据,就意味着数据丢失,影响的是数据可靠性;报主键冲突,是插入失败,影响的是可用性。而一般情况下,可靠性优先于可用性。

Xid

在第15篇文章《答疑文章(一):日志和索引相关问题》中,我和你介绍redo log和binlog相配合的时候,提到了它们有一个共同的字段叫作Xid。它在MySQL中是用来对应事务的。

那么,Xid在MySQL内部是怎么生成的呢?

MySQL内部维护了一个全局变量global_query_id,每次执行语句的时候将它赋值给Query_id,然后给这个变量加1。如果当前语句是这个事务执行的第一条语句,那么MySQL还会同时把Query_id赋值给这个事务的Xid。

而global_query_id是一个纯内存变量,重启之后就清零了。所以你就知道了,在同一个数据库实例中,不同事务的Xid也是有可能相同的。

但是MySQL重启之后会重新生成新的binlog文件,这就保证了,同一个binlog文件里,Xid一定是惟一的。

虽然MySQL重启不会导致同一个binlog里面出现两个相同的Xid,但是如果global_query_id达到上限后,就会继续从0开始计数。从理论上讲,还是就会出现同一个binlog里面出现相同Xid的场景。

因为global_query_id定义的长度是8个字节,这个自增值的上限是264-1。要出现这种情况,必须是下面这样的过程:

  1. 执行一个事务,假设Xid是A;

  2. 接下来执行264次查询语句,让global_query_id回到A;

  3. 再启动一个事务,这个事务的Xid也是A。

不过,264这个值太大了,大到你可以认为这个可能性只会存在于理论上。

Innodb trx_id

Xid和InnoDB的trx_id是两个容易混淆的概念。

Xid是由server层维护的。InnoDB内部使用Xid,就是为了能够在InnoDB事务和server之间做关联。但是,InnoDB自己的trx_id,是另外维护的。

其实,你应该非常熟悉这个trx_id。它就是在我们在第8篇文章《事务到底是隔离的还是不隔离的?》中讲事务可见性时,用到的事务id(transaction id)。

InnoDB内部维护了一个max_trx_id全局变量,每次需要申请一个新的trx_id时,就获得max_trx_id的当前值,然后并将max_trx_id加1。

InnoDB数据可见性的核心思想是:每一行数据都记录了更新它的trx_id,当一个事务读到一行数据的时候,判断这个数据是否可见的方法,就是通过事务的一致性视图与这行数据的trx_id做对比。

对于正在执行的事务,你可以从information_schema.innodb_trx表中看到事务的trx_id。

我在上一篇文章的末尾留给你的思考题,就是关于从innodb_trx表里面查到的trx_id的。现在,我们一起来看一个事务现场:

图3 事务的trx_id

session B里,我从innodb_trx表里查出的这两个字段,第二个字段trx_mysql_thread_id就是线程id。显示线程id,是为了说明这两次查询看到的事务对应的线程id都是5,也就是session A所在的线程。

可以看到,T2时刻显示的trx_id是一个很大的数;T4时刻显示的trx_id是1289,看上去是一个比较正常的数字。这是什么原因呢?

实际上,在T1时刻,session A还没有涉及到更新,是一个只读事务。而对于只读事务,InnoDB并不会分配trx_id。也就是说:

  1. 在T1时刻,trx_id的值其实就是0。而这个很大的数,只是显示用的。一会儿我会再和你说说这个数据的生成逻辑。

  2. 直到session A 在T3时刻执行insert语句的时候,InnoDB才真正分配了trx_id。所以,T4时刻,session B查到的这个trx_id的值就是1289。

需要注意的是,除了显而易见的修改类语句外,如果在select 语句后面加上for update,这个事务也不是只读事务。

在上一篇文章的评论区,有同学提出,实验的时候发现不止加1。这是因为:

  1. update 和 delete语句除了事务本身,还涉及到标记删除旧数据,也就是要把数据放到purge队列里等待后续物理删除,这个操作也会把max_trx_id+1, 因此在一个事务中至少加2;

  2. InnoDB的后台操作,比如表的索引信息统计这类操作,也是会启动内部事务的,因此你可能看到,trx_id值并不是按照加1递增的。

那么,T2时刻查到的这个很大的数字是怎么来的呢?

其实,这个数字是每次查询的时候由系统临时计算出来的。它的算法是:把当前事务的trx变量的指针地址转成整数,再加上248。使用这个算法,就可以保证以下两点:

  1. 因为同一个只读事务在执行期间,它的指针地址是不会变的,所以不论是在 innodb_trx还是在innodb_locks表里,同一个只读事务查出来的trx_id就会是一样的。

  2. 如果有并行的多个只读事务,每个事务的trx变量的指针地址肯定不同。这样,不同的并发只读事务,查出来的trx_id就是不同的。

那么,为什么还要再加上248呢?

在显示值里面加上248,目的是要保证只读事务显示的trx_id值比较大,正常情况下就会区别于读写事务的id。但是,trx_id跟row_id的逻辑类似,定义长度也是8个字节。因此,在理论上还是可能出现一个读写事务与一个只读事务显示的trx_id相同的情况。不过这个概率很低,并且也没有什么实质危害,可以不管它。

另一个问题是,只读事务不分配trx_id,有什么好处呢?

  • 一个好处是,这样做可以减小事务视图里面活跃事务数组的大小。因为当前正在运行的只读事务,是不影响数据的可见性判断的。所以,在创建事务的一致性视图时,InnoDB就只需要拷贝读写事务的trx_id。
  • 另一个好处是,可以减少trx_id的申请次数。在InnoDB里,即使你只是执行一个普通的select语句,在执行过程中,也是要对应一个只读事务的。所以只读事务优化后,普通的查询语句不需要申请trx_id,就大大减少了并发事务申请trx_id的锁冲突。

由于只读事务不分配trx_id,一个自然而然的结果就是trx_id的增加速度变慢了。

但是,max_trx_id会持久化存储,重启也不会重置为0,那么从理论上讲,只要一个MySQL服务跑得足够久,就可能出现max_trx_id达到248-1的上限,然后从0开始的情况。

当达到这个状态后,MySQL就会持续出现一个脏读的bug,我们来复现一下这个bug。

首先我们需要把当前的max_trx_id先修改成248-1。注意:这个case里使用的是可重复读隔离级别。具体的操作流程如下:

图 4 复现脏读

由于我们已经把系统的max_trx_id设置成了248-1,所以在session A启动的事务TA的低水位就是248-1。

在T2时刻,session B执行第一条update语句的事务id就是248-1,而第二条update语句的事务id就是0了,这条update语句执行后生成的数据版本上的trx_id就是0。

在T3时刻,session A执行select语句的时候,判断可见性发现,c=3这个数据版本的trx_id,小于事务TA的低水位,因此认为这个数据可见。

但,这个是脏读。

由于低水位值会持续增加,而事务id从0开始计数,就导致了系统在这个时刻之后,所有的查询都会出现脏读的。

并且,MySQL重启时max_trx_id也不会清0,也就是说重启MySQL,这个bug仍然存在。

那么,这个bug也是只存在于理论上吗?

假设一个MySQL实例的TPS是每秒50万,持续这个压力的话,在17.8年后,就会出现这个情况。如果TPS更高,这个年限自然也就更短了。但是,从MySQL的真正开始流行到现在,恐怕都还没有实例跑到过这个上限。不过,这个bug是只要MySQL实例服务时间够长,就会必然出现的。

当然,这个例子更现实的意义是,可以加深我们对低水位和数据可见性的理解。你也可以借此机会再回顾下第8篇文章《事务到底是隔离的还是不隔离的?》中的相关内容。

thread_id

接下来,我们再看看线程id(thread_id)。其实,线程id才是MySQL中最常见的一种自增id。平时我们在查各种现场的时候,show processlist里面的第一列,就是thread_id。

thread_id的逻辑很好理解:系统保存了一个全局变量thread_id_counter,每新建一个连接,就将thread_id_counter赋值给这个新连接的线程变量。

thread_id_counter定义的大小是4个字节,因此达到232-1后,它就会重置为0,然后继续增加。但是,你不会在show processlist里看到两个相同的thread_id。

这,是因为MySQL设计了一个唯一数组的逻辑,给新线程分配thread_id的时候,逻辑代码是这样的:

do {
  new_id= thread_id_counter++;
} while (!thread_ids.insert_unique(new_id).second);

这个代码逻辑简单而且实现优雅,相信你一看就能明白。

小结

今天这篇文章,我给你介绍了MySQL不同的自增id达到上限以后的行为。数据库系统作为一个可能需要7*24小时全年无休的服务,考虑这些边界是非常有必要的。

每种自增id有各自的应用场景,在达到上限后的表现也不同:

  1. 表的自增id达到上限后,再申请时它的值就不会改变,进而导致继续插入数据时报主键冲突的错误。

  2. row_id达到上限后,则会归0再重新递增,如果出现相同的row_id,后写的数据会覆盖之前的数据。

  3. Xid只需要不在同一个binlog文件中出现重复值即可。虽然理论上会出现重复值,但是概率极小,可以忽略不计。

  4. InnoDB的max_trx_id 递增值每次MySQL重启都会被保存起来,所以我们文章中提到的脏读的例子就是一个必现的bug,好在留给我们的时间还很充裕。

  5. thread_id是我们使用中最常见的,而且也是处理得最好的一个自增id逻辑了。

当然,在MySQL里还有别的自增id,比如table_id、binlog文件序号等,就留给你去验证和探索了。

不同的自增id有不同的上限值,上限值的大小取决于声明的类型长度。而我们专栏声明的上限id就是45,所以今天这篇文章也是我们的最后一篇技术文章了。

既然没有下一个id了,课后也就没有思考题了。今天,我们换一个轻松的话题,请你来说说,读完专栏以后有什么感想吧。

这个“感想”,既可以是你读完专栏前后对某一些知识点的理解发生的变化,也可以是你积累的学习专栏文章的好方法,当然也可以是吐槽或者对未来的期望。

欢迎你给我留言,我们在评论区见,也欢迎你把这篇文章分享给更多的朋友一起阅读。

标签:自增,46,45,事务,trx,InnoDB,id,row
From: https://www.cnblogs.com/ningxinjie/p/17336990.html

相关文章

  • FS2455高效率的同步降压DC-DC转换器5A输出电流
    概述FS2455是一种高效率的同步降压DC-DC转换器,具有5A输出电流。 FS2455在4.5V到30V的宽输入电压范围内工作, 集成主开关和同步开关,具有非常低的RDS(ON)以最小化传导损失。 FS2455具有轻载时的应用和高效率。此外,它的工作频率是恒定的在连续导通模式下为500kHz,以使电感器和电容器的......
  • 洛谷 P8456 -「SWTR-8」地地铁铁(图论+结论)
    挺有意思的结论题,结论的证明比较复杂。据出题人说他大概想了几天几夜才证出来,所以本篇题解并不详细给出结论证明,如果有兴趣可以自己去看出题人的题解:https://www.luogu.com.cn/blog/AlexWei/solution-p8456。首先涉及到简单路径,肯定往双连通分量的方向思考。因此我们首先建出圆方......
  • 剑指 Offer 45. 把数组排成最小的数
    题目链接:剑指Offer45.把数组排成最小的数方法:排序解题思路将数字转化为字符串数组,然后\(sort()\);cmp()函数staticboolcmp(stringa,stringb){returna+b<b+a;}代码//写法一classSolution{public:staticboolcmp(stringa,stringb){......
  • ERROR 1045 (28000): Access denied for user '-root'@'localhost' (using password:
    以下是cmd的操作(重启服务,修改my.ini文章下面有my.ini配置) 当修改密码为123456是sqlyog连接成功修改为root时连接报老错误,又修改为123456在修改为root就连接正常了MicrosoftWindows[版本10.0.18363.1139](c)2019MicrosoftCorporation。保留所有权利。C:\ProgramFiles......
  • NAGA将发行820万美元可转换债券、Tradier宣布完成2460万美元B轮融资!
    过去一周在外汇和差价合约交易领域中,以下是广受大家关注的新闻,比如NAGA将发行820万美元可转换债券、Tradier完成了2460万美元的B轮融资、eToro与Twitter$Cashtags合作进行股票、ETF和加M货币交易。具体新闻如下:1、NAGA将发行820万美元可转换债券据悉,近期零售外汇和差价合约经纪公......
  • FS2462原厂24W大功率同步整流芯片 大电流降压IC
    FS2462是泛海微自主开发的5A降压型同步整流芯片,是国内首家大电流同步5A芯片,内部集成极低RDS内阻20豪欧金属氧化物半导体场效应晶体管的(MOSFET)。输入工作电压宽至4.75V到21V,输出电压1.0V可调至20V。5A的连续负载电流输出可保证系统各状态下稳定运行。其效率高达95%,满足各系统日益......
  • CF1646E Power Board 题解
    题目链接:https://codeforces.com/contest/1646/problem/E题目大意:有一个\(n\timesm\)的矩阵,其中第\(i\)行第\(j\)列的格子中的数字是\(i^j\)。问:矩阵中存在多少个不同的数?解题思路:可以很明显地发现,第\(1\)行的数字全部都是\(1\),而且在其它行不会出现数值为\(1\)......
  • 代码随想录 46天 day198.打家劫舍 | | 337.打家劫舍 III | 213.打家劫舍II
    你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。给定一个代表每个房屋存放金额的非负整数数组,计算你不触动警报装置的情况下,一夜之内能......
  • 代码随想录 day 46 139.单词拆分
    给定一个非空字符串s和一个包含非空单词的列表wordDict,判定 s是否可以被空格拆分为一个或多个在字典中出现的单词。说明:拆分时可以重复使用字典中的单词。你可以假设字典中没有重复的单词。示例1:输入:s="leetcode",wordDict=["leet","code"]输出:true解释:......
  • 【js】时间戳转时间 1680338700 =》2023-04-01 16:45:00
    1transformTimestamp(timestamp){2letdate=newDate(parseInt(timestamp)*1000)3letYear=date.getFullYear()4letMoth=(date.getMonth()+1<10?'0'+(date.getMonth()+1):date.getMonth()+1)5letDay=(date.getDat......