首页 > 其他分享 >代码随想录 46天 day198.打家劫舍 | | 337.打家劫舍 III | 213.打家劫舍II

代码随想录 46天 day198.打家劫舍 | | 337.打家劫舍 III | 213.打家劫舍II

时间:2023-04-17 16:33:20浏览次数:57  
标签:right 213 nums int max 随想录 打家劫舍 dp left

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

  • 示例 1:
  • 输入:[1,2,3,1]
  • 输出:4
  1. 确定递推公式

决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点)

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

  1. dp数组如何初始化

从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]

从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);

class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) return 0;
        if (nums.length == 1) return nums[0];
        int[] dp =new int[nums.length];
        dp[0] = nums[0];
dp[1] = Math.max(dp[0], nums[1]);
        for (int i = 2;i < nums.length; i++) {
            dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
        }
        return dp[nums.length - 1];
    }
}

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2] 输出:3 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

  • 情况一:考虑不包含首尾元素

  • 情况二:考虑包含首元素,不包含尾元素

  • 情况三:考虑包含尾元素,不包含首元素

注意我这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。

而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。

分析到这里,本题其实比较简单了。 剩下的和198.打家劫舍 (opens new window)就是一样的了。

class Solution {
    public int rob(int[] nums) {
     if (nums == null || nums.length == 0)
            return 0;
        int len = nums.length;
        if (len == 1)
            return nums[0];
        return Math.max(helper(nums, 0, len - 1), helper(nums, 1, len));
    }

    private int helper(int[] nums, int start, int end) {
        int x = 0, y = 0, z = 0;
        for (int i = start; i < end; i++) {
            y = z;
            z = Math.max(y, x + nums[i]);
            x = y;
        }
        return z;
    }
}

 

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int rob(TreeNode root) {
        int[] res = helper(root);
        return Math.max(res[0], res[1]);
    }

    private int[] helper(TreeNode root) {
        int[] res = new int[2];
        if (root == null) {
            return res;
        }
        int[] left = helper(root.left);
        int[] right = helper(root.right);
         res[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        res[1] = root.val + left[0] + right[0];
        return res;
    }
}

 

标签:right,213,nums,int,max,随想录,打家劫舍,dp,left
From: https://www.cnblogs.com/libertylhy/p/17326280.html

相关文章