首页 > 其他分享 >Variational Quantum Linear Solver 的MindQuantum复现

Variational Quantum Linear Solver 的MindQuantum复现

时间:2023-04-16 18:25:18浏览次数:49  
标签:kappa Linear Solver qubits list RY Quantum rangle omega

本教程复现论文Variational Quantum Linear Solver中的图四。图四使用了文中提出的VQLS算法求解文中II.B.1中给出的问题Ising-inspired QLSP,给出了参数\(\kappa\)与线路运行次数的关系。

算法流程

VQLS算法用于求解线性方程的解,即对方程\(Ax=b\),已知\(A\)和\(b\),得出方程的解\(x\)。如上图所示,在VQLS算法中,作者利用量子线路来代替\(A\),使用含参量子线路\(V(\alpha)\)来制备\(x\),即\(|x\rangle=V(\alpha)|0\rangle\),使用量子线路\(U\)来制备\(b\),即\(U|0\rangle=|b\rangle\),通过对\(V(\alpha)\)中的参数\(\alpha\)进行优化,使得\(AV|0\rangle=A|x\rangle\)逼近\(U|0\rangle=|b\rangle\),从而得到方程的解\(x\)。

损失函数的导出

文中使用了量子网络得到损失函数的值,并根据损失函数的值对量子网络的参数\(\alpha\)进行优化。下面对文中的损失函数进行简要说明。

损失函数值的形式

文中通过Ansatz线路生成\(|x(\alpha)\rangle\),将\(|\psi\rangle=A|x\rangle\)逼近\(|b\rangle\)来得到参数\(\alpha\)。

因此损失函数定义为\(C_G=1-|\langle b|\psi\rangle|^2=1-\langle\psi|b\rangle\langle b|\psi\rangle=1-\langle x|A^+U|\mathbf0\rangle\langle\mathbf0|U^+A|\psi\rangle\).

但是\(C_G\)在优化时容易遇到barren plateaus。

因此引入了新的损失函数
\(C_L=1-\langle x|A^+U(\frac{1}{n}\sum_{j=1}^n|0_j\rangle\langle0_j|\bigotimes\Bbb1_{\overline j})U^+A|x\rangle\)

代入\(|0_j\rangle\langle0_j|=\frac{Z_j+I_j}{2}\)

\[C_L=\frac{1}{2}-\frac{1}{2n}\sum_{j=1}^n\langle x|A^+UZ_jU^+A|x\rangle \]

其中\(A\)可以分解成一系列幺正矩阵之和\(A=\sum_{l=1}^Lc_lA_l\),其中\(A_l\)对应了简单的门电路,方便使用Hadamard Test求解。于是\(C_L\)可以分解为

\[C_L=\frac{1}{2}-\frac{1}{2n}\sum_{ll'j}c_lc_{l'}\langle x|A^+_{l'}UZ_jU^+A_l|x\rangle \]

Hadamard Test线路计算损失函数

文中提供了Hadamard Test线路和Hadamard Overlap Test线路计算上面提到的损失函数\(C_L\)。这里使用Hadamard Test线路进行计算,文中的Fig. 9(c)为对应的线路图。

量子线路示意图

对于中间的受控\(Z_j\),由于需要作用到每一个比特上,那么线路将多生成\(n_{qubits}\)个,我们可以使用受控PS门来代替受控\(Z_j\),将PS门的参数以encoding的形式传入到量子网络中。首先我们在\(Z_j\)的位置对所有比特都施加一个受控PS门,当想要对第\(j\)个比特实现\(Z_j\)作用时,我们将作用在第\(j\)个比特的\(PS\)门中传入参数\(\pi\),这样受控\(PS_j\)门会变成\(Z_j\),对于其他所有比特的\(PS_{\overline j}\)门传入参数0,那么其他比特的的\(PS\)门会变成单位矩阵\(I_\overline j\),即可实现想要的效果。

推导

下面简要推导从Hadamard Test得到\(C_L\)的过程。

系统初态为\(|\mathbf0\rangle=|0\rangle_a\bigotimes|0\rangle^{\bigotimes n}\),经过H门作用,系统变为\(\frac{1}{\sqrt2}|0\rangle_a\bigotimes|0\rangle^{\bigotimes n} + \frac{1}{\sqrt2}|1\rangle_a\bigotimes|0\rangle^{\bigotimes n}\)。

经过各种门电路作用,系统的态最终变成了

\[|\phi\rangle=\frac{1}{\sqrt2}H|0\rangle_a\bigotimes V|0\rangle^{\bigotimes n} -j \frac{1}{\sqrt2}H|1\rangle_a\bigotimes A_{l'}^+UZ_jU^+A_lV|0\rangle^{\bigotimes n}=\frac{1}{2}(|0\rangle_a+|1\rangle_a)\bigotimes V|0\rangle^{\bigotimes n} -j \frac{1}{2}(|0\rangle_a-|1\rangle_a)\bigotimes A_{l'}^+UZ_jU^+A_lV|0\rangle^{\bigotimes n} \]

线路最后对ancilla比特进行了测量,得到0的概率为

\[P(|0\rangle_a)=\langle\phi|(|0\rangle_a\langle0|_a\bigotimes I)|\phi\rangle =\frac{1}{4}\langle0|^{\bigotimes n}(V^++jV^+A_l^+UZ_j^+U^+A_{l'})(V-jA_{l'}^+UZ_jU^+A_lV)|0\rangle^{\bigotimes n} =\frac{1}{2}-j\langle x|A^+_{l'}UZ_jU^+A_l|x\rangle+j\langle x|A^+_lUZ^+jU^+A_{l'}|x\rangle =\frac{1}{2}+\frac{1}{2}Im[\langle x|A^+_{l'}UZ_jU^+A_l|x\rangle]\]

同理可得,得到1的概率为

\[P(|1\rangle_a) =\frac{1}{2}-\frac{1}{2}Im[\langle x|A^+_{l'}UZ_jU^+A_l|x\rangle]\]

因此\(C_L\)中\(\langle x|A^+_{l'}UZ_jU^+A_l|x\rangle\)的虚部可由\(P(|0\rangle_a)-P(|1\rangle_a)\)得到,如要求实部将线路中\(S^+\)去掉,同样使用\(P(|0\rangle_a)-P(|1\rangle_a)\)得到。

\[P(|0\rangle_a)-P(|1\rangle_a) =\langle\phi|(|0\rangle_a\langle0|_a\bigotimes I)|\phi\rangle-\langle\phi|(|1\rangle_a\langle1|_a\bigotimes I)|\phi\rangle =\langle\phi|(Z_a\bigotimes I)|\phi\rangle\]

在Mindquantum中要求\(P(|0\rangle_a)-P(|1\rangle_a)\)的值,只需要使用量子线路生成\(|\phi\rangle\)后,再求哈密顿量\(Z_a\)在\(|\phi\rangle\)上的期望即可。

VQLS算法实例

本教程使用MindQuantum首先复现https://pennylane.ai/qml/demos/tutorial_vqls.html 中的一个简单算例,详细说明VQLS的运行过程。

网络结构

为了得到

\[C_L=\frac{1}{2}-\frac{1}{2n}\sum_{ll'j}c_lc_{l'}\langle x|A^+_{l'}UZ_jU^+A_l|x\rangle \]

其中的

\[Im[\langle x|A^+_{l'}UZ_jU^+A_l|x\rangle]=\langle\phi(ll'j)||0\rangle_a\langle 0|_a|\phi(ll'j)\rangle \]

对于\(l,l'\)不同的取值,每个都要生成两个网络,用于计算实部和虚部,\(j\)可以通过对PS门传参控制。

本教程中,先构造网络生成\(|\phi(ll'j)\rangle\),通过对其求期望的方式构造梯度算子,从而得到了各个量子网络的输出,再使用\(c_lc_{l'}\)加权叠加,计算得到\(C_L\),并使用Mindspore中的自动微分功能,对\(C_L\)自动求导并优化。

构造\(A, U, V\)线路

from mindquantum.core.circuit import Circuit, UN, controlled, dagger
from mindquantum.core.gates import PhaseShift, I, RX, RY, RZ, H, X, Z

import numpy as np

# 参数定义
n_qubits = 3

# 构造A_l
A_list = [[1, Circuit()], [0.2, Circuit(X.on(0))+Z.on(1)], [0.2, Circuit(X.on(0))]]
print('A线路:')
for n, A in enumerate(A_list):
    print(f'A_{n}:\n')
    print(A[1],'\n')

# 构造U
U = UN(H, n_qubits)
print('U线路')
print(U, '\n')
# 构造V
V = Circuit(RY(f'omega_{i}').on(i) for i in range(n_qubits))
print('V线路')
print(V, '\n')
/home/ma-user/modelarts-dev/modelarts-sdk/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (5.0.0)/charset_normalizer (2.0.12) doesn't match a supported version!
  RequestsDependencyWarning)


A线路:
A_0:

 

A_1:

q0: ──X──

q1: ──Z── 

A_2:

q0: ──X── 

U线路
q0: ──H──

q1: ──H──

q2: ──H── 

V线路
q0: ──RY(omega_0)──

q1: ──RY(omega_1)──

q2: ──RY(omega_2)── 

构造Hadmard Test线路并生成梯度算子

# 构造Hadamard Test线路
def generate_hdt(n_qubits, V, U, A_l, A_lp, is_imag=True):
    ancilla_ind = n_qubits

    A_l = Circuit(A_l)
    A_lp = Circuit(A_lp)
    
    ancilla = Circuit(H.on(ancilla_ind))
    if is_imag:
        ancilla += PhaseShift(-np.pi/2).on(ancilla_ind)
    ancilla += controlled(A_l)(ancilla_ind) 
    
    hdt = Circuit()
    hdt += ancilla
    hdt += dagger(U)
    for j in range(0, n_qubits):
        hdt += controlled(Circuit(PhaseShift(f'Z_{j}').on(j)))(ancilla_ind)
    hdt += U
    hdt += controlled(dagger(A_lp))(ancilla_ind)
    hdt += H.on(ancilla_ind)
    hdt = hdt.no_grad()
    hdt.as_encoder()
    return V + hdt


hdt_imag = generate_hdt(n_qubits, V, U, A_list[0][1], A_list[0][1])
hdt_real = generate_hdt(n_qubits, V, U, A_list[0][1], A_list[0][1], False)
print(hdt_imag)
hdt_imag.summary()
print(hdt_real)
hdt_real.summary()

# 构造梯度算子以得到测量概率
from mindquantum.core.operators import Hamiltonian, QubitOperator
from mindquantum.simulator import Simulator

# 构造哈密顿量
# 当ancilla测量结果为1,波函数系数乘-1;当测量结果为0,系数不变.
Qops = QubitOperator('Z%d'%n_qubits)
hams = Hamiltonian(Qops)

sim = Simulator('projectq', n_qubits+1)
# 得到<0|hams hdt_imag|0>=P(0)-P(1)
grad_ops_imag = sim.get_expectation_with_grad(hams, hdt_imag)
grad_ops_real = sim.get_expectation_with_grad(hams, hdt_real)
# 运行多次均为实数,证明可以得到一个概率
weight = np.pi*np.array(np.random.rand(n_qubits))
print(grad_ops_imag(np.pi*np.array([[1.,0, 0]]), weight))
print(grad_ops_real(np.pi*np.array([[1.,0, 0]]), weight))
q0: ──RY(omega_0)───────H────────PS(Z_0)───────H─────────────────────
                                    │
q1: ──RY(omega_1)───────H───────────┼───────PS(Z_1)───────H──────────
                                    │          │
q2: ──RY(omega_2)───────H───────────┼──────────┼───────PS(Z_2)────H──
                                    │          │          │
q3: ───────H─────────PS(-π/2)───────●──────────●──────────●───────H──
==========================Circuit Summary==========================
|Total number of gates  : 15.                                     |
|Parameter gates        : 6.                                      |
|with 6 parameters are  :                                         |
|omega_0, omega_1, omega_2, Z_0, Z_1, Z_2                        .|
|Number qubit of circuit: 4                                       |
===================================================================
q0: ──RY(omega_0)────H────PS(Z_0)───────H─────────────────────
                             │
q1: ──RY(omega_1)────H───────┼───────PS(Z_1)───────H──────────
                             │          │
q2: ──RY(omega_2)────H───────┼──────────┼───────PS(Z_2)────H──
                             │          │          │
q3: ───────H─────────────────●──────────●──────────●───────H──
==========================Circuit Summary==========================
|Total number of gates  : 14.                                     |
|Parameter gates        : 6.                                      |
|with 6 parameters are  :                                         |
|omega_0, omega_1, omega_2, Z_0, Z_1, Z_2                        .|
|Number qubit of circuit: 4                                       |
===================================================================
(array([[0.+0.j]]), array([[[0.+0.j, 0.+0.j, 0.+0.j]]]), array([[[-1.23010388e-17+0.j,  4.23704588e-33+0.j, -1.54074396e-33+0.j]]]))
(array([[0.56641042+0.j]]), array([[[0.+0.j, 0.+0.j, 0.+0.j]]]), array([[[ 8.24123313e-01+0.j,  2.77555756e-17+0.j, -1.77809156e-17+0.j]]]))
# 对每对$A_l$, $A_{l'}^+$生成量子线路,得到所有线路对应的梯度算子
def generate_grad_ops(n_qubits, V, U, A):
    circuits_list = []
    grad_ops_list = []
    coeff_list = []
    # 构造哈密顿量
    Qops = QubitOperator('Z%d'%n_qubits)
    hams = Hamiltonian(Qops)
    # 生成模拟器
    sim = Simulator('projectq', n_qubits+1)

    for c_l, A_l in A:
        for c_lp, A_lp in A:
            hdt_imag = generate_hdt(n_qubits, V, U, A_l, A_lp)
            hdt_real = generate_hdt(n_qubits, V, U, A_l, A_lp, False)
            # 得到<0|hams hdt_imag|0>=P(0)-P(1)
            grad_ops_imag = sim.get_expectation_with_grad(hams, hdt_imag)
            grad_ops_real = sim.get_expectation_with_grad(hams, hdt_real)
            grad_ops_list.extend([grad_ops_real, grad_ops_imag])
            coeff_list.append(c_l*np.conj(c_lp))
            circuits_list.append(hdt_real)
    return coeff_list, grad_ops_list, circuits_list

coeff_list, grad_ops_list, circuits_list = generate_grad_ops(n_qubits, V, U, A_list)

# 输出所有网络检查
for ind, circuit in enumerate(circuits_list):
    print(f'第{ind+1}个网络')
    print(circuit, '\n')
第1个网络
q0: ──RY(omega_0)────H────PS(Z_0)───────H─────────────────────
                             │
q1: ──RY(omega_1)────H───────┼───────PS(Z_1)───────H──────────
                             │          │
q2: ──RY(omega_2)────H───────┼──────────┼───────PS(Z_2)────H──
                             │          │          │
q3: ───────H─────────────────●──────────●──────────●───────H── 

第2个网络
q0: ──RY(omega_0)────H────PS(Z_0)───────H────────────────────────────X───────
                             │                                       │
q1: ──RY(omega_1)────H───────┼───────PS(Z_1)───────H────────────Z────┼───────
                             │          │                       │    │
q2: ──RY(omega_2)────H───────┼──────────┼───────PS(Z_2)────H────┼────┼───────
                             │          │          │            │    │
q3: ───────H─────────────────●──────────●──────────●────────────●────●────H── 

第3个网络
q0: ──RY(omega_0)────H────PS(Z_0)───────H───────────────────────X───────
                             │                                  │
q1: ──RY(omega_1)────H───────┼───────PS(Z_1)───────H────────────┼───────
                             │          │                       │
q2: ──RY(omega_2)────H───────┼──────────┼───────PS(Z_2)────H────┼───────
                             │          │          │            │
q3: ───────H─────────────────●──────────●──────────●────────────●────H── 

第4个网络
q0: ──RY(omega_0)────X────H─────────PS(Z_0)───────H─────────────────────
                     │                 │
q1: ──RY(omega_1)────┼────Z────H───────┼───────PS(Z_1)───────H──────────
                     │    │            │          │
q2: ──RY(omega_2)────┼────┼────H───────┼──────────┼───────PS(Z_2)────H──
                     │    │            │          │          │
q3: ───────H─────────●────●────────────●──────────●──────────●───────H── 

第5个网络
q0: ──RY(omega_0)────X────H─────────PS(Z_0)───────H────────────────────────────X───────
                     │                 │                                       │
q1: ──RY(omega_1)────┼────Z────H───────┼───────PS(Z_1)───────H────────────Z────┼───────
                     │    │            │          │                       │    │
q2: ──RY(omega_2)────┼────┼────H───────┼──────────┼───────PS(Z_2)────H────┼────┼───────
                     │    │            │          │          │            │    │
q3: ───────H─────────●────●────────────●──────────●──────────●────────────●────●────H── 

第6个网络
q0: ──RY(omega_0)────X────H─────────PS(Z_0)───────H───────────────────────X───────
                     │                 │                                  │
q1: ──RY(omega_1)────┼────Z────H───────┼───────PS(Z_1)───────H────────────┼───────
                     │    │            │          │                       │
q2: ──RY(omega_2)────┼────┼────H───────┼──────────┼───────PS(Z_2)────H────┼───────
                     │    │            │          │          │            │
q3: ───────H─────────●────●────────────●──────────●──────────●────────────●────H── 

第7个网络
q0: ──RY(omega_0)────X────H────PS(Z_0)───────H─────────────────────
                     │            │
q1: ──RY(omega_1)────┼────H───────┼───────PS(Z_1)───────H──────────
                     │            │          │
q2: ──RY(omega_2)────┼────H───────┼──────────┼───────PS(Z_2)────H──
                     │            │          │          │
q3: ───────H─────────●────────────●──────────●──────────●───────H── 

第8个网络
q0: ──RY(omega_0)────X────H────PS(Z_0)───────H────────────────────────────X───────
                     │            │                                       │
q1: ──RY(omega_1)────┼────H───────┼───────PS(Z_1)───────H────────────Z────┼───────
                     │            │          │                       │    │
q2: ──RY(omega_2)────┼────H───────┼──────────┼───────PS(Z_2)────H────┼────┼───────
                     │            │          │          │            │    │
q3: ───────H─────────●────────────●──────────●──────────●────────────●────●────H── 

第9个网络
q0: ──RY(omega_0)────X────H────PS(Z_0)───────H───────────────────────X───────
                     │            │                                  │
q1: ──RY(omega_1)────┼────H───────┼───────PS(Z_1)───────H────────────┼───────
                     │            │          │                       │
q2: ──RY(omega_2)────┼────H───────┼──────────┼───────PS(Z_2)────H────┼───────
                     │            │          │          │            │
q3: ───────H─────────●────────────●──────────●──────────●────────────●────H── 

构建量子网络和损失函数\(C_L\)

由于所有梯度算子共享同一套优化参数omega_1, omega_2, omega_3,我们需要把这些梯度算子封装到一层神经网络中。量子网络的输出为一个list,list中每一项都为一个Hadamard Test线路的输出。

图中所示的Parameters,就是需要优化的参数omega_1, omega_2, omega_3,所有量子网络共享这些参数,以便参与到对\(C_L\)的求导优化,这是通过下面代码构造的MQMultiGradsLayer类来完成的。

# 根据梯度算子构造神经网络,以便参与到优化
# 由于所有梯度算子共享同一套优化参数omega_1, omega_2, omega_3,我们需要把这些梯度算子封装到一层神经网络中
import mindspore as ms
ms.context.set_context(mode=ms.context.PYNATIVE_MODE, device_target="CPU")

from mindspore import nn
from mindquantum.framework import MQOps
from mindspore.common.initializer import initializer
from mindspore import ops, Tensor, Parameter


class MQMultiGradsLayer(nn.Cell):
    def __init__(self, grads_ops_list, weight='normal'):
        """Initialize a MQLayer object."""
        super().__init__()
        self.evo_list = []
        weight_name_set = set()
        # 相同名称的ansatz为同一个权重
        ansatz_params_list = []

        for grads in grads_ops_list:
            self.evo_list.append(MQOps(grads))
            # print(grads.circ_right)
            weight_name_set = weight_name_set | set(grads.ansatz_params_name)
            ansatz_params_list.append(grads.ansatz_params_name)
        weight_name_list = list(weight_name_set)
        weight_name_list = np.sort(weight_name_list).tolist()

        self.weight_ind_list = []
        for params_name in ansatz_params_list:
            weight_ind = [weight_name_list.index(p_name) for p_name in params_name]
            self.weight_ind_list.append(Tensor(weight_ind, dtype=ms.int32))

        weight_size = len(weight_name_list)
        if isinstance(weight, ms.Tensor):
            if weight.ndim != 1 or weight.shape[0] != weight_size:
                raise ValueError(f"Weight init shape error, required ({weight_size}, ), but get {weight.shape}.")
        self.weight = Parameter(initializer(weight, weight_size, dtype=ms.float32), name='ansatz_weight')

    def construct(self, x):
        result = []
        for evo, weight_ind in zip(self.evo_list, self.weight_ind_list):
            # print(evo.expectation_with_grad.circ_right)
            weight = ops.gather(self.weight, weight_ind, axis=0) # 挑选网络中需要的的参数
            result.append(evo(x, weight))
        return result

# 生成网络并尝试运行,此时我们会得到2x3x3个网络的输出
QuantumNets = MQMultiGradsLayer(grad_ops_list)
result = QuantumNets(Tensor(np.pi*np.array([[1.,0, 0], [0, 0, 1.]])))
print('共%d个网络' % len(result))
print(result)
共18个网络
[Tensor(shape=[2, 1], dtype=Float32, value=
[[-8.28392163e-04],
 [ 1.70038268e-02]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[-5.51035729e-17],
 [-2.74975515e-17]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[ 9.99993265e-01],
 [-1.40857428e-05]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[-1.47796430e-17],
 [-2.82190218e-17]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[ 1.00000000e+00],
 [-1.40858374e-05]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[-1.47796430e-17],
 [-2.82190218e-17]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[ 9.99993265e-01],
 [-1.40857428e-05]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[-1.50369954e-17],
 [-2.83241233e-17]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[-8.28392163e-04],
 [ 1.70038268e-02]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[ 5.50419082e-17],
 [ 1.39000767e-16]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[-8.28386634e-04],
 [ 1.70037132e-02]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[ 5.50419082e-17],
 [ 1.39000767e-16]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[ 1.00000000e+00],
 [-1.40858374e-05]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[-1.39317067e-17],
 [-2.78645980e-17]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[-8.28386634e-04],
 [ 1.70037132e-02]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[ 5.54116745e-17],
 [ 1.38983191e-16]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[-8.28392163e-04],
 [ 1.70038268e-02]]), Tensor(shape=[2, 1], dtype=Float32, value=
[[ 5.54116745e-17],
 [ 1.38983191e-16]])]
# 构建C_L
class NetworkCL(nn.Cell):
    def __init__(self, n_qubits, grad_ops_list, coeff_list):
        super().__init__()
        self.vqcs = MQMultiGradsLayer(grad_ops_list)
        self.coeff_list = Tensor(coeff_list)
        self.n_qubits = n_qubits
        
    def construct(self):
        x = np.pi*np.eye(n_qubits)
        x = np.row_stack((x, [0]*n_qubits))
        x = Tensor(x)
        qnets = self.vqcs(x)
        # 此时qnets按照u_{ll',j}的实部和虚部依次排布
        real = Tensor(0)
        imag = Tensor(0)
        for n in range(0, len(self.coeff_list)):
            real += qnets[2*n]*self.coeff_list[n]
            imag += qnets[2*n+1]*self.coeff_list[n]
        # 归一化
        norm = ops.pow(ops.square(sum(real[0:n_qubits]))+ops.square(sum(imag[0:n_qubits])), 0.5)
        norm /= ops.pow(ops.square(real[-1])+ops.square(imag[-1]), 0.5)
        return 0.5 - 0.5/n_qubits*norm

CL = NetworkCL(n_qubits, grad_ops_list, coeff_list)
print('初始C_L:', CL())
print('优化参数为:', CL.trainable_params())
初始C_L: [0.38568467]
优化参数为: [Parameter (name=vqcs.weight, shape=(3,), dtype=Float32, requires_grad=True)]

优化\(C_L\)

%matplotlib inline
import matplotlib.pyplot as plt
import mindspore
from mindspore import ops, Tensor, Parameter
from mindspore.nn import TrainOneStepCell

# 优化
learning_rate = 2
optimizer = nn.SGD(CL.trainable_params(), learning_rate=learning_rate)

net = TrainOneStepCell(CL, optimizer)

cost_history = []
for it in range(30):
    res = net()
    cost_history.append(float(res))

plt.plot(np.arange(30), cost_history)
plt.xlabel('Optimization Steps')
plt.ylabel('Cost Function')

结果验证

# 得到x并验证结果
from mindquantum.core.gates import I


I_on_all = sum(Circuit(I.on(n)) for n in range(n_qubits))
sim = Simulator('projectq', n_qubits)
sim.apply_circuit(V, CL.trainable_params()[0].asnumpy())
x = sim.get_qs()
sim.reset()
b = sim.apply_circuit(U)
b = sim.get_qs()
A = sum([c*(A_l+I_on_all).matrix(big_end=True) for c, A_l in A_list])
x_classical = np.dot(np.linalg.inv(A.astype(np.float64)), b)
x_classical /= np.linalg.norm(x_classical)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 4))

ax1.bar(np.arange(0, 2 ** n_qubits), np.abs(x_classical)**2, color="blue")
ax1.set_xlim(-0.5, 2 ** n_qubits - 0.5)
ax1.set_xlabel("Vector space basis")
ax1.set_title("Classical probabilities")

ax2.bar(np.arange(0, 2 ** n_qubits), np.abs(x)**2, color="green")
ax2.set_xlim(-0.5, 2 ** n_qubits - 0.5)
ax2.set_xlabel("Hilbert space basis")
ax2.set_title("Quantum probabilities")

plt.show()
/home/ma-user/anaconda3/envs/MindQuantum/lib/python3.7/site-packages/ipykernel/__main__.py:13: ComplexWarning: Casting complex values to real discards the imaginary part

原文复现


构造\(A\)

原文中要求\(J=0.1\),\(\xi\)和\(\eta\)的选择应满足让\(A\)的最大特征值为1,最小特征值为\(1/\kappa\),其中\(\kappa\)是给定的参数。

假设\(A\)中的前两个求和项的\(\sum_{j=1}^nX_j+J\sum_{j=1}^{n-1}Z_jZ_{j+1}\)最大最小特征值为\(E_{max}, E_{min}\),\(\Bbb1\)为单位阵,其特征值为1,因此\(A\)的最大、最小特征值分别为\(\frac{E_{max}+\eta}{\xi}=1\),\(\frac{E_{min}+\eta}{\xi}=\frac{1}{\kappa}\)。

我们首先计算\(E_{max}\)和\(E_{min}\),然后代入上式计算\(\xi\)和\(\eta\)。

n_qubits = 10

def generate_A_list(kappa, n_qubits):
    J = 0.1
    I_on_all = sum(Circuit(I.on(n)) for n in range(n_qubits))
    A_list = [[1, Circuit(X.on(j))] for j in range(n_qubits)]
    A_list.extend([[J, Circuit(Z.on(j)) + Z.on(j+1)] for j in range(n_qubits-1)])
    A = sum([c*(A_l+I_on_all).matrix(big_end=True) for c, A_l in A_list])
    eigvals = np.linalg.eigvals(A)
    xi = (max(eigvals)-min(eigvals))/(1-1/kappa)
    eta = (max(eigvals)-kappa*min(eigvals))/(kappa-1)
    A_list.append([eta, Circuit()])
    A_list = [[float(c/xi), A_l] for c, A_l in A_list]
    return A_list

# 求$\kappa=20$时的$A$
kappa = 20
A_list = generate_A_list(kappa, n_qubits)
I_on_all = sum(Circuit(I.on(n)) for n in range(n_qubits))
A = sum([c*(A_l+I_on_all).matrix(big_end=True) for c, A_l in A_list])
eigvals = np.linalg.eigvals(A)
print('最大特征值为%f, 最小特征值为%f' % (max(eigvals), min(eigvals)))
/home/ma-user/anaconda3/envs/MindQuantum/lib/python3.7/site-packages/ipykernel/__main__.py:13: ComplexWarning: Casting complex values to real discards the imaginary part


最大特征值为1.000000, 最小特征值为0.050000


/home/ma-user/anaconda3/envs/MindQuantum/lib/python3.7/site-packages/ipykernel/__main__.py:22: ComplexWarning: Casting complex values to real discards the imaginary part

构造\(V\)

文中使用的是Hardware-Efficient Ansatz。

from mindquantum.core.circuit import shift, add_prefix, Circuit
from mindquantum.core.gates import RY, X

n_layers = 4
n_qubits = 10


def construct_ansatz(n_layers, n_qubits):
    ansatz = Circuit()
    ansatz += Circuit(RY(f'0_ry{i}').on(i) for i in range(n_qubits))
    # 构造每一层的线路模板
    template = Circuit([X.on(1, 0)])
    single_layer = sum(shift(template, i) for i in range(0, n_qubits, 2))
    single_layer += Circuit(RY(f'1_ry{i}').on(i) for i in range(n_qubits))
    single_layer += sum(shift(template, i) for i in range(1, n_qubits-1, 2))
    single_layer += Circuit(RY(f'2_ry{i}').on(i) for i in range(1, n_qubits-1))
    # 总共有n_layers层
    ansatz += sum(add_prefix(single_layer, f'layer{i}') for i in range(0, n_layers))

    return ansatz


eff_ansatz = construct_ansatz(n_layers, n_qubits)
print(eff_ansatz)
q0: ──RY(0_ry0)────●────RY(layer0_1_ry0)─────────────────────────────●────RY(layer1_1_ry0)─────────────────────────────●────RY(layer2_1_ry0)─────────────────────────────●────RY(layer3_1_ry0)───────────────────────────
                   │                                                 │                                                 │                                                 │
q1: ──RY(0_ry1)────X────RY(layer0_1_ry1)────●────RY(layer0_2_ry1)────X────RY(layer1_1_ry1)────●────RY(layer1_2_ry1)────X────RY(layer2_1_ry1)────●────RY(layer2_2_ry1)────X────RY(layer3_1_ry1)────●────RY(layer3_2_ry1)──
                                            │                                                 │                                                 │                                                 │
q2: ──RY(0_ry2)────●────RY(layer0_1_ry2)────X────RY(layer0_2_ry2)────●────RY(layer1_1_ry2)────X────RY(layer1_2_ry2)────●────RY(layer2_1_ry2)────X────RY(layer2_2_ry2)────●────RY(layer3_1_ry2)────X────RY(layer3_2_ry2)──
                   │                                                 │                                                 │                                                 │
q3: ──RY(0_ry3)────X────RY(layer0_1_ry3)────●────RY(layer0_2_ry3)────X────RY(layer1_1_ry3)────●────RY(layer1_2_ry3)────X────RY(layer2_1_ry3)────●────RY(layer2_2_ry3)────X────RY(layer3_1_ry3)────●────RY(layer3_2_ry3)──
                                            │                                                 │                                                 │                                                 │
q4: ──RY(0_ry4)────●────RY(layer0_1_ry4)────X────RY(layer0_2_ry4)────●────RY(layer1_1_ry4)────X────RY(layer1_2_ry4)────●────RY(layer2_1_ry4)────X────RY(layer2_2_ry4)────●────RY(layer3_1_ry4)────X────RY(layer3_2_ry4)──
                   │                                                 │                                                 │                                                 │
q5: ──RY(0_ry5)────X────RY(layer0_1_ry5)────●────RY(layer0_2_ry5)────X────RY(layer1_1_ry5)────●────RY(layer1_2_ry5)────X────RY(layer2_1_ry5)────●────RY(layer2_2_ry5)────X────RY(layer3_1_ry5)────●────RY(layer3_2_ry5)──
                                            │                                                 │                                                 │                                                 │
q6: ──RY(0_ry6)────●────RY(layer0_1_ry6)────X────RY(layer0_2_ry6)────●────RY(layer1_1_ry6)────X────RY(layer1_2_ry6)────●────RY(layer2_1_ry6)────X────RY(layer2_2_ry6)────●────RY(layer3_1_ry6)────X────RY(layer3_2_ry6)──
                   │                                                 │                                                 │                                                 │
q7: ──RY(0_ry7)────X────RY(layer0_1_ry7)────●────RY(layer0_2_ry7)────X────RY(layer1_1_ry7)────●────RY(layer1_2_ry7)────X────RY(layer2_1_ry7)────●────RY(layer2_2_ry7)────X────RY(layer3_1_ry7)────●────RY(layer3_2_ry7)──
                                            │                                                 │                                                 │                                                 │
q8: ──RY(0_ry8)────●────RY(layer0_1_ry8)────X────RY(layer0_2_ry8)────●────RY(layer1_1_ry8)────X────RY(layer1_2_ry8)────●────RY(layer2_1_ry8)────X────RY(layer2_2_ry8)────●────RY(layer3_1_ry8)────X────RY(layer3_2_ry8)──
                   │                                                 │                                                 │                                                 │
q9: ──RY(0_ry9)────X────RY(layer0_1_ry9)─────────────────────────────X────RY(layer1_1_ry9)─────────────────────────────X────RY(layer2_1_ry9)─────────────────────────────X────RY(layer3_1_ry9)───────────────────────────

优化终止条件

根据文中式(9)的定义,可以将\(\gamma=\frac{\epsilon^2}{n_{qubits}\kappa^2}\)作为\(C_L\)的下界,当\(C_L\le\gamma\)时终止优化程序,得到问题的解。

# 构造U
U = UN(H, n_qubits)

# 构造V
eff_ansatz = construct_ansatz(n_layers, n_qubits)

# 构造所有线路
coeff_list, grad_ops_list, circuits_list = generate_grad_ops(n_qubits, eff_ansatz, U, A_list)

# 构造损失函数
CL = NetworkCL(n_qubits, grad_ops_list, coeff_list)

# 优化
learning_rate = 5
epsilon = 10
optimizer = nn.SGD(CL.trainable_params(), learning_rate=learning_rate)

net = TrainOneStepCell(CL, optimizer)

cost_history = []
time_cost = 0
gamma = 1/n_qubits*(epsilon/kappa)**2
res = gamma + 1
while gamma < res:
    res = net()
    cost_history.append(float(res))
    print('Loss: ', float(res))
    time_cost += 1


plt.plot(np.arange(len(cost_history)), cost_history)
plt.xlabel('Optimization Steps')
plt.ylabel('Cost Function')
print('Time Cost:', time_cost)
Loss:  0.42248088121414185
Loss:  0.21629470586776733
Loss:  0.09381318092346191
Loss:  0.04756203293800354
Loss:  0.03003239631652832
Loss:  0.021059304475784302
Time Cost: 6

Time-to-solution的计算

图四描述了\(\kappa\)取值与Time-to-solution的关系,文中的Time-to-solution为计算损失函数的次数(the number of exact cost function evaluations during the optimization)。

def time_to_solution(A_list, n_qubits, epsilon):
    n_layers = 4

    U = UN(H, n_qubits)
    eff_ansatz = construct_ansatz(n_layers, n_qubits)
    coeff_list, grad_ops_list, circuits_list = generate_grad_ops(n_qubits, eff_ansatz, U, A_list)
    CL = NetworkCL(n_qubits, grad_ops_list, coeff_list)

    learning_rate = 5
    optimizer = nn.SGD(CL.trainable_params(), learning_rate=learning_rate)

    net = TrainOneStepCell(CL, optimizer)

    time_to_solution = 0
    gamma = 1/n_qubits*(epsilon/kappa)**2
    res = gamma + 1
    while gamma < res:
        res = net()
        time_to_solution += 1
    return time_to_solution

Fig.4复现

\(\kappa\)取不同值时,我们以\(\kappa=20\)为基准,对\(A\)中每项的系数进行放缩,以满足其最大特征值和最小特征值为\(1,1/\kappa\)。由于\(n_{qubits}>10\)时运行时间过长,这里仅复现\(n_{qubits}=10\)的情况。这里取\(\epsilon\)为50和10,以让程序更快执行完毕。

epsilon_list = (50, 10)
all_time_cost = []
n_qubits = 10
kappa_list = np.arange(20, 180, 20)
A_list = generate_A_list(kappa_list[0], n_qubits)
for epsilon in epsilon_list:
    time_cost = []
    print('epsilon:', epsilon)
    for kappa in kappa_list:
        # 放缩A_list
        xi = (1-1/kappa_list[0])/(1-1/kappa)
        eta = (1-kappa*1/kappa_list[0])/(kappa-1)
        A_resized = [[float(c/xi), A_l] for c, A_l in A_list]
        A_resized[-1][0] += eta/xi
        time_cost.append(time_to_solution(A_resized, n_qubits, epsilon))
        print('kappa:', kappa, 'Time-to-solution:', time_cost[-1])
        # A = sum([c*(A_l+I_on_all).matrix(big_end=True) for c, A_l in A_resized])
        # eigvals = np.linalg.eigvals(A)
        # print('最大特征值为%f, 最小特征值为%f' % (max(eigvals), min(eigvals)))
    all_time_cost.append(time_cost)
all_time_cost = np.asarray(all_time_cost)
/home/ma-user/anaconda3/envs/MindQuantum/lib/python3.7/site-packages/ipykernel/__main__.py:13: ComplexWarning: Casting complex values to real discards the imaginary part


epsilon: 50
kappa: 20 Time-to-solution: 1
kappa: 40 Time-to-solution: 3
kappa: 60 Time-to-solution: 4
kappa: 80 Time-to-solution: 5
kappa: 100 Time-to-solution: 6
kappa: 120 Time-to-solution: 7
kappa: 140 Time-to-solution: 8
kappa: 160 Time-to-solution: 9
epsilon: 10
kappa: 20 Time-to-solution: 6
kappa: 40 Time-to-solution: 12
kappa: 60 Time-to-solution: 19
kappa: 80 Time-to-solution: 26
kappa: 100 Time-to-solution: 36
kappa: 120 Time-to-solution: 46
kappa: 140 Time-to-solution: 54
kappa: 160 Time-to-solution: 67
%matplotlib inline

plt.plot(kappa_list, all_time_cost[0, :], 'o--')
plt.plot(kappa_list, all_time_cost[1, :], 'o-')
plt.legend([r'$\epsilon=$'+str(eps) for eps in epsilon_list])
plt.xlabel(r'$\kappa$')
plt.ylabel('Time-to-solution')

标签:kappa,Linear,Solver,qubits,list,RY,Quantum,rangle,omega
From: https://www.cnblogs.com/liniganma/p/17323717.html

相关文章

  • 关于 SaaS 软件销售领域中的 Renewal 和 linearity
    SaaS(软件即服务)中的Renewal指的是客户续订其订阅服务的过程。在SaaS模式下,客户通常会订阅软件服务,以获得对软件的使用权限和支持。这种订阅通常是按照一定的时间段(通常是每月或每年)收费的。当订阅服务即将到期时,SaaS提供商通常会与客户联系,提供续订服务的机会。在续订过程中,......
  • TypeResolver用法
    1、List1TypeResolvertypeResolver=newTypeResolver();2//listType=>List<Object>3ResolvedTypelistType=typeResolver.resolve(List.class);2、Map1classStringIntMapextendsHashMap<String,Integer>{}23TypeResolvertypeResol......
  • sklearn.linear_model.LogisticRegression-逻辑回归分类器
    语法格式class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto'......
  • UVa 457 Linear Cellular Automata (water ver.)
    457-LinearCellularAutomataTimelimit:3.000secondshttp://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=94&page=show_problem&problem=398AbiologistisexperimentingwithDNAmodificationofbacterialcolonies......
  • CMPSC311 mdadm Linear Device
    Assignment#4–mdadmLinearDevice(Caching)CMPSC311-IntroductiontoSystemsProgrammingFall2021-Prof.AghayevDuedate:April9,2023(11:59PM)ESTYoujustcompletedimplementingmdadmanditisworking.Thesoftwareengineerswhoplantobuild......
  • 现代计算机图形学——P1-2. Review of Linear Algebra
    (自用笔记)P1.(虚假的P1)计算机图形学、其研究内容及其相关领域与学科P1.(真正的P1)OverviewofComputerGraphicsP2.ReviewofLinearAlgebraP1计算机图形学——是研究怎样用计算机输入、生成(处理)、存储、显示、输出图形的一门学科。构成图形的要素:1.几何要素——形......
  • LinearLayout增加divider分割线
    在android3.0及后面的版本在LinearLayout里增加了个分割线android:divider="@drawable/shape"<!--分割线图片-->android:showDividers="middle|beginning|end"<!--分割线位置-->分割线如果是图片那就直接使用图片就行,如果要使用颜色就必须使用shape来显......
  • MIT Linear Algebra
    MITLinearAlgebra:按照列的方式进行多维向量的线性组合而不是用对应行和列的各元素的乘积和;......
  • QuantumultX vmess协议格式
    #节点配置片段包含一些节点配置信息;可通过资源引用的方式使用。#片段文件将保存在QuantumultX目录下的Profiles子目录中。比如改文件名叫“vpsnode”vmess=xxx.......
  • Ceres 中的线性求解器类型(linear_solver_type)
    CeresSolver中的线性求解器类型(linear_solver_type)有多个选项,包括:DENSE_QR:使用稠密QR分解方法求解线性方程组。适用于内存足够的小规模问题,求解速度较快。DENSE_SCHUR:......