(sinx)^2的积分为∫sin^2xdx=∫(1-cos2x)dx/2=(1/2)∫(1-cos2x)dx=(1/2)(x-sin2x/2)+C =(2x-sin2x)/4+C。
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
一、公式的推导
∫sin^2xdx
=∫(1-cos2x)dx/2
=(1/2)∫(1-cos2x)dx
=(1/2)(x-sin2x/2)+C
=(2x-sin2x)/4+C
所以sinx^2的积分是(2x-sin2x)/4+C。
二、积分
1、积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
2、某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
3、微分就是在某点处用切线的直线方程近似曲线方程的取值,不指定某点就是所有点满足的关系式;积分分为定积分和不定积分,定积分就是求曲线与x轴所夹的面积;不定积分就是该面积满足的方程式。
分部积分法两个原则
1、相对来说,谁易凑到微分后面,就凑谁;
2、交换位置之后的积分容易求出。
经验顺序:对,反,幂,三,指
谁在后面就把谁凑到微分的后面去,比如,如果被积函数有指数函数,就优先把指数凑到微分的后面去,如果没有就考虑把三角函数凑到后面去,在考虑幂函数。需要注意的是经验顺序不是绝对的,而是一个笼统的顺序,掌握两大原则更重要。
标签:sin2x,sinx,积分,不定积分,cos2x,dx From: https://www.cnblogs.com/amxiang/p/17263199.html