首页 > 其他分享 >商品零售购物篮分析

商品零售购物篮分析

时间:2023-03-19 22:36:09浏览次数:34  
标签:sort plt 购物篮 selected 零售 商品 supportData csv data

#8-1
import numpy as np
import pandas as pd

inputfile="D:\数据分析\GoodsOrder.csv"
data=pd.read_csv(inputfile,encoding = 'gbk')
data.info() 

data=data['id']
description=[data.count(),data.min(),data.max()]
description=pd.DataFrame(description,index=['Count','Min','Max']).T
print('描述性统计结果:\n',np.round(description))
复制代码

 

 

复制代码
#8-2
import pandas as pd
inputfile="D:\数据分析\GoodsOrder.csv"
data=pd.read_csv(inputfile,encoding='gbk')
group=data.groupby(['Goods']).count().reset_index()
sorted=group.sort_values('id',ascending=False)
print('销量排行前10商品的销量:\n',sorted[:10])

import matplotlib.pyplot as plt
x=sorted[:10]['Goods']
y=sorted[:10]['id']
plt.figure(figsize=(8,4))
plt.barh(x,y)
plt.rcParams['font.sans-serif']='SimHei'
plt.xlabel('销量')
plt.ylabel('商品类别') 
plt.title('学号3108商品的销量TOP10')
plt.savefig("D:/数据分析/top10.png")
plt.show()

data_nums=data.shape[0]
for index,row in sorted[:10].iterrows():
    print(row['Goods'],row['id'],row['id']/data_nums)

 

 

 

 

 

 

#8-3
import pandas as pd
inputfile1="D:\数据分析\GoodsOrder.csv"
inputfile2 ="D:\数据分析\GoodsTypes.csv"
data= pd.read_csv(inputfile1,encoding='gbk')
types = pd.read_csv(inputfile2,encoding='gbk')

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values( 'id',ascending=False).reset_index()
datanums=data.shape[0]
del sort['index']

sort_links= pd.merge(sort,types)

sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending=False).reset_index()
del sort_link['index']

sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns={'count':'percent'},inplace=True)
print('各类别商品的销量及其占比:\n',sort_link)
outfile1='D:/数据分析/percent.csv'
sort_link.to_csv(outfile1,index=False,header=True,encoding='gbk')

import matplotlib.pyplot as plt
data = sort_link['percent']
labels = sort_link['Types']
plt.figure(figsize=(8,6))
plt.pie(data,labels=labels,autopct='%1.2f%%')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('学号3108每类商品销量占比')
plt.savefig('D:/数据分析/persent.png')
plt.show()
 

 

 

 

 

#8-4
selected= sort_links.loc[sort_links['Types'] =='非酒精饮料']
child_nums= selected['id'].sum()
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis=1)
selected.rename(columns={'id':'count'},inplace=True)
print('非酒精饮料内部商品的销量及其占比:\n',selected)
outfile2='D:/数据分析/child percent.csv'
sort_link.to_csv(outfile2,index=False,header=True,encoding='gbk')

import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize=(8,6))
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)
plt.pie(data,explode=explode,labels=labels,autopct='%1.2f%%',pctdistance=1.1,labeldistance=1.2)
plt.rcParams['font.sans-serif'] ='SimHei'
plt.title('学号3108非酒精饮料内部各商品的销量占比')
plt.axis('equal')
plt.savefig('D:/数据分析/child_persent.png') 
plt.show()
复制代码

 

 

 

 

#8-5
import pandas as pd
inputfile="D:\数据分析\GoodsOrder.csv"
data = pd.read_csv(inputfile,encoding='gbk')

data['Goods'] = data['Goods'].apply(lambda x:','+x)
data=data.groupby(['id'])['Goods'].sum().reset_index()


#对合并的商品列转换数据格式
data['Goods'] = data['Goods'].apply(lambda x :[x[1:]])
data_list = list(data['Goods'])
data_translation = []
for i in data_list:
    p = i[0].split(',')
    data_translation.append(p)
print('数据转换结果的前5个元素:\n',data_translation[0:5])
复制代码

 

 

from numpy import *
 
def loadDataSet():
    return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'],
            ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']]
 
def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    # 映射为frozenset唯一性的,可使用其构造字典
    return list(map(frozenset, C1))   

  # 从候选K项集到频繁K项集(支持度计算)
def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:   # 遍历数据集
        for can in Ck:  # 遍历候选项
            if can.issubset(tid):  # 判断候选项中是否含数据集的各项
                if not can in ssCnt:
                    ssCnt[can] = 1  # 不含设为1
                else:
                    ssCnt[can] += 1  # 有则计数加1
    numItems = float(len(D))  # 数据集大小
    retList = []  # L1初始化
    supportData = {}  # 记录候选项中各个数据的支持度
    for key in ssCnt:
        support = ssCnt[key] / numItems  # 计算支持度
        if support >= minSupport:
            retList.insert(0, key)  # 满足条件加入L1中
            supportData[key] = support  
    return retList, supportData

def calSupport(D, Ck, min_support):
    dict_sup = {}
    for i in D:
        for j in Ck:
            if j.issubset(i):
                if not j in dict_sup:
                    dict_sup[j] = 1
                else:
                    dict_sup[j] += 1
    sumCount = float(len(D))
    supportData = {}
    relist = []
    for i in dict_sup:
        temp_sup = dict_sup[i] / sumCount
        if temp_sup >= min_support:
            relist.append(i)
            # 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据)
            supportData[i] = temp_sup
    return relist, supportData

# 改进剪枝算法
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):  # 两两组合遍历
            L1 = list(Lk[i])[:k - 2]
            L2 = list(Lk[j])[:k - 2]
            L1.sort()
            L2.sort()
            if L1 == L2:  # 前k-1项相等,则可相乘,这样可防止重复项出现
                # 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集)
                a = Lk[i] | Lk[j]  # a为frozenset()集合
                a1 = list(a)
                b = []
                # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中
                for q in range(len(a1)):
                    t = [a1[q]]
                    tt = frozenset(set(a1) - set(t))
                    b.append(tt)
                t = 0
                for w in b:
                    # 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。
                    if w in Lk:
                        t += 1
                if t == len(b):
                    retList.append(b[0] | b[1])
    return retList

def apriori(dataSet, minSupport=0.2):
# 前3条语句是对计算查找单个元素中的频繁项集
    C1 = createC1(dataSet)
    D = list(map(set, dataSet))  # 使用list()转换为列表
    L1, supportData = calSupport(D, C1, minSupport)
    L = [L1]  # 加列表框,使得1项集为一个单独元素
    k = 2
    while (len(L[k - 2]) > 0):  # 是否还有候选集
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D, Ck, minSupport)  # scan DB to get Lk
        supportData.update(supK)  # 把supk的键值对添加到supportData里
        L.append(Lk)  # L最后一个值为空集
        k += 1
    del L[-1]  # 删除最后一个空集
    return L, supportData  # L为频繁项集,为一个列表,1,2,3项集分别为一个元素

# 生成集合的所有子集
def getSubset(fromList, toList):
    for i in range(len(fromList)):
        t = [fromList[i]]
        tt = frozenset(set(fromList) - set(t))
        if not tt in toList:
            toList.append(tt)
            tt = list(tt)
            if len(tt) > 1:
                getSubset(tt, toList)

def calcConf(freqSet, H, supportData, ruleList, minConf=0.7):
    for conseq in H:  #遍历H中的所有项集并计算它们的可信度值
        conf = supportData[freqSet] / supportData[freqSet - conseq]  # 可信度计算,结合支持度数据
        # 提升度lift计算lift = p(a & b) / p(a)*p(b)
        lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq])
 
        if conf >= minConf and lift > 1:
            print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet], 6), '置信度:', round(conf, 6),
                  'lift值为:', round(lift, 6))
            ruleList.append((freqSet - conseq, conseq, conf))
 
# 生成规则
def gen_rule(L, supportData, minConf = 0.7):
    bigRuleList = []
    for i in range(1, len(L)):  # 从二项集开始计算
        for freqSet in L[i]:  # freqSet为所有的k项集
            # 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型,
            H1 = list(freqSet)
            all_subset = []
            getSubset(H1, all_subset)  # 生成所有的子集
            calcConf(freqSet, all_subset, supportData, bigRuleList, minConf)
    return bigRuleList
 
if __name__ == '__main__':
    dataSet = data_translation
    L, supportData = apriori(dataSet, minSupport = 0.02)
    rule = gen_rule(L, supportData, minConf = 0.35)
 

 

 

selected= sort_links.loc[sort_links['Types'] =='西点']
child_nums= selected['id'].sum()
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis=1)
selected.rename(columns={'id':'count'},inplace=True)
print('西点的销量及其占比:\n',selected)
outfile2='D:/数据分析/child percent.csv'
sort_link.to_csv(outfile2,index=False,header=True,encoding='gbk')

import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize=(8,6))
explode = (0.02,0.02,0.03,0.04,0.06,0.06,0.07,0.08,0.3,0.1,0.2,0.02,0.03,0.04,0.06,0.06,0.07,0.08,0.3,0.1,0.2)
plt.pie(data,explode=explode,labels=labels,autopct='%1.2f%%',pctdistance=1.1,labeldistance=1.2)
plt.rcParams['font.sans-serif'] ='SimHei'
plt.title('学号3108西点的销量占比')
plt.axis('equal')
plt.savefig('D:/数据分析/child_persent.png') 
plt.show()
复制代码  

 

 

 

 

标签:sort,plt,购物篮,selected,零售,商品,supportData,csv,data
From: https://www.cnblogs.com/gbywl/p/17234594.html

相关文章

  • python商品零售购物篮分析
    1#-*-coding:utf-8-*-23#代码8-1查看数据特征45importnumpyasnp6importpandasaspd78inputfile=r'C:\Users\86184\Desktop\文件集\d......
  • 商品数据分析
    importnumpyasnpimportpandasaspdinputfile='D://人工智能//GoodsOrder.csv'data=pd.read_csv(inputfile,encoding='gbk')data.info()data=data['id'......
  • 数据挖掘之商品零售
    商品零售购物篮分析代码一:查看数据特征%matplotlibinlineimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltplt.rcParams["font.sans-serif......
  • 商品零售购物篮分析
    importnumpyasnpimportpandasaspdinputfile=r'E:\sj\GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encoding='gbk')#读取数据data.inf......
  • 第四周(商品零售购物篮分析)
    查看数据特征#%%importnumpyasnpimportpandasaspdinputfile='./data/GoodsOrder.csv'data=pd.read_csv(inputfile,encoding='gbk')data.info#%%data=......
  • 商品分析(关联规则)
    1#-*-coding:utf-8-*-2"""3CreatedonWedFeb2210:56:39202345@author:admin6"""78#代码8-19importnumpyasnp10impor......
  • 商品的零售购物篮分析
    importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltplt.rcParams["font.sans-serif"]=["SimHei"]plt.rcParams["axes.unicode_minus"]=Fals......
  • 商品数据分析
    importnumpyasnpimportpandasaspdinputfile=r'C:\Users\admin\Desktop\新建文件夹\GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encodi......
  • 商品零售购物篮分析
    一、背景与挖掘目标购物篮分析是商业领域最前沿、最具挑战性的问题之一,也是许多企业重点研究的问题。购物篮分析是通过发现顾客在一次购买行为中放入购物篮中不同商品之间......
  • Python爬虫采集商品评价信息--京东
    1.数据采集逻辑在进行数据采集之前,明确哪些数据为所需,制定数据Schema为爬取工作做出要求,并根据数据Schema制定出有针对性的爬取方案和采集逻辑。  2.数据Schema3.......