首页 > 其他分享 >财政收入影响因素分析及预测

财政收入影响因素分析及预测

时间:2023-03-05 23:23:02浏览次数:32  
标签:因素 plt 预测 train 财政收入 np new data reg


import random import pandas as pd import numpy as np import matplotlib.pyplot as plt # 计算欧拉距离 def calcDis(dataSet, centroids, k): clalist=[] for data in dataSet: diff = np.tile(data, (k, 1)) - centroids #相减 (np.tile(a,(2,1))就是把a先沿x轴复制1倍,即没有复制,仍然是 [0,1,2]。 再把结果沿y方向复制2倍得到array([[0,1,2],[0,1,2]])) squaredDiff = diff ** 2 #平方 squaredDist = np.sum(squaredDiff, axis=1) #和 (axis=1表示行) distance = squaredDist ** 0.5 #开根号 clalist.append(distance) clalist = np.array(clalist) #返回一个每个点到质点的距离len(dateSet)*k的数组 return clalist # 计算质心 def classify(dataSet, centroids, k): # 计算样本到质心的距离 clalist = calcDis(dataSet, centroids, k) # 分组并计算新的质心 minDistIndices = np.argmin(clalist, axis=1) #axis=1 表示求出每行的最小值的下标 newCentroids = pd.DataFrame(dataSet).groupby(minDistIndices).mean() #DataFramte(dataSet)对DataSet分组,groupby(min)按照min进行统计分类,mean()对分类结果求均值 newCentroids = newCentroids.values # 计算变化量 changed = newCentroids - centroids return changed, newCentroids # 使用k-means分类 def kmeans(dataSet, k): # 随机取质心 centroids = random.sample(dataSet, k) # 更新质心 直到变化量全为0 changed, newCentroids = classify(dataSet, centroids, k) while np.any(changed != 0): changed, newCentroids = classify(dataSet, newCentroids, k) centroids = sorted(newCentroids.tolist()) #tolist()将矩阵转换成列表 sorted()排序 # 根据质心计算每个集群 cluster = [] clalist = calcDis(dataSet, centroids, k) #调用欧拉距离 minDistIndices = np.argmin(clalist, axis=1) for i in range(k): cluster.append([]) for i, j in enumerate(minDistIndices): #enymerate()可同时遍历索引和遍历元素 cluster[j].append(dataSet[i]) return centroids, cluster # 创建数据集 def createDataSet(): return [[1, 1], [1, 2], [2, 1], [6, 4], [6, 3], [5, 4]] if __name__=='__main__': dataset = createDataSet() centroids, cluster = kmeans(dataset, 2) print('质心为:%s' % centroids) print('集群为:%s' % cluster) for i in range(len(dataset)): plt.scatter(dataset[i][0],dataset[i][1], marker = 'o',color = 'green', s = 40 ,label = '原始点') # 记号形状 颜色 点的大小 设置标签 for j in range(len(centroids)): plt.scatter(centroids[j][0],centroids[j][1],marker='x',color='red',s=50,label='质心') plt.title('3126-mint') plt.show()

 

 

 

 描述性统计分析

# 对各属性进行描述性统计分析
def statisticAnalysis():
    inputfile = '../data/data.csv'  # 输出的数据文件
    data = pd.read_csv(inputfile)  # 读数据
    # 最小值、最大值、均值、标准差
    description = [data.min(), data.max(), data.mean(), data.std()]

    # 将结果存入数据框
    description = pd.DataFrame(description, index=["Min", "Max", "Mean", "STD"]).T
    print("描述性统计结果:\n", np.round(description, 2))  # 保留两位
相关系数矩阵和热力图
# 求解原始数据的Pearson相关系数矩阵
def correlationCoefficientMatrix(data):
inputfile = '../data/data.csv' # 输出的数据文件
data = pd.read_csv(inputfile) # 读数据
corr = data.corr(method='pearson') # 计算相关系数矩阵
print("相关系数矩阵为:\n", np.round(corr, 2)) # 保留两位
return corr

# 绘制相关性热力图
def thermodynamic(corr):
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签
plt.rcParams['axes.unicode_minus']=False
plt.subplots(figsize=(10, 10))
sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues_r")
plt.title("相关性热力图 3126")
plt.show()
plt.close()

 

 构建模型并预测

# 构建灰色预测模型并预测
def grey():
    sys.path.append("D:/作业/数据挖掘/tmp")

    inputfile1 = "../data/new_reg_data.csv"
    inputfile2 = "../data/data.csv"
    new_reg_data = pd.read_csv(inputfile1)
    data = pd.read_csv(inputfile2)
    new_reg_data.index = range(1994, 2014)
    new_reg_data.loc[2014] = None
    new_reg_data.loc[2015] = None
    cols = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
    for i in cols:
        f = GM11(new_reg_data.loc[range(1994, 2014), i].values)[0]
        new_reg_data.loc[2014, i] = f(len(new_reg_data)-1)   # 2014年预测结果
        new_reg_data.loc[2015, i] = f(len(new_reg_data))  # 2015年预测结果
        new_reg_data[i] = new_reg_data[i].round(2)

    outputfile = '../tmp/new_reg_data_GM11.xls'            # 灰色预测后保存路径
    y = list(data['y'].values)
    y.extend([np.nan, np.nan])
    new_reg_data['y'] = y
    new_reg_data.to_excel(outputfile)
    print("预测结果为:\n",new_reg_data.loc[2014:2015,:])

# 构建支持向量回归预测模型
def SVR():
    from sklearn.svm import LinearSVR

    inputfile = '../tmp/new_reg_data_GM11.xls'
    data = pd.read_excel(inputfile)
    feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
    data.index = range(1994, 2016)
    data_train = data.loc[range(1994, 2014)].copy()
    data_mean = data_train.mean()
    data_std = data_train.std()
    data_train = (data_train - data_mean)/data_std
    x_train = data_train[feature].to_numpy()
    y_train = data_train['y'].to_numpy()

    linearsvr = LinearSVR()
    linearsvr.fit(x_train, y_train)
    x = ((data[feature] - data_mean[feature])/data_std[feature]).to_numpy()

    data[u'y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
    # outputfile = '../tmp/new_reg_data_GM11_revenue.xls'
    # data.to_excel(outputfile)

    print("真实值与预测值分别为:\n",data[['y', 'y_pred']])

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
    plt.rcParams['axes.unicode_minus'] = False

    fig = data[['y', 'y_pred']].plot(subplots = True,style=['b-o', 'r-*'])
    plt.title("3126")
    plt.show()

 

 GM(1,1)

def GM11(x0):    # 自定义灰色预测函数
  import numpy as np
  x1 = x0.cumsum()    # 1-AGO序列
  z1 = (x1[:len(x1)-1] + x1[1:])/2.0   # 紧邻均值(MEAN)生成序列
  z1 = z1.reshape((len(z1),1))
  B = np.append(-z1, np.ones_like(z1), axis = 1)
  Yn = x0[1:].reshape((len(x0)-1, 1))
  [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn)   # 计算参数
  f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2))   # 还原值
  delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)]))
  C = delta.std()/x0.std()
  P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0)
  return f, a, b, x0[0], C, P   # 返回灰色预测函数、a、b、首项、方差比、小残差概率

全部代码示意如下:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sys
from GM11 import GM11


inputfile = '../data/data.csv'  # 输出的数据文件
data = pd.read_csv(inputfile)  # 读数据


# 对各属性进行描述性统计分析
def statisticAnalysis(data):
    # 最小值、最大值、均值、标准差
    description = [data.min(), data.max(), data.mean(), data.std()]

    # 将结果存入数据框
    description = pd.DataFrame(description, index=["Min", "Max", "Mean", "STD"]).T
    print("描述性统计结果:\n", np.round(description, 2))  # 保留两位


# 求解原始数据的Pearson相关系数矩阵
def correlationCoefficientMatrix(data):
    corr = data.corr(method='pearson')  # 计算相关系数矩阵
    print("相关系数矩阵为:\n", np.round(corr, 2))  # 保留两位
    return corr


# 绘制相关性热力图
def thermodynamic(corr):
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
    plt.rcParams['axes.unicode_minus']=False
    plt.subplots(figsize=(10, 10))
    sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues_r")
    plt.title("相关性热力图 3126")
    plt.show()
    plt.close()


# 构建灰色预测模型并预测
def grey():
    sys.path.append("D:/作业/数据挖掘/tmp")

    inputfile1 = "../data/new_reg_data.csv"
    inputfile2 = "../data/data.csv"
    new_reg_data = pd.read_csv(inputfile1)
    data = pd.read_csv(inputfile2)
    new_reg_data.index = range(1994, 2014)
    new_reg_data.loc[2014] = None
    new_reg_data.loc[2015] = None
    cols = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
    for i in cols:
        f = GM11(new_reg_data.loc[range(1994, 2014), i].values)[0]
        new_reg_data.loc[2014, i] = f(len(new_reg_data)-1)   # 2014年预测结果
        new_reg_data.loc[2015, i] = f(len(new_reg_data))  # 2015年预测结果
        new_reg_data[i] = new_reg_data[i].round(2)

    outputfile = '../tmp/new_reg_data_GM11.xls'            # 灰色预测后保存路径
    y = list(data['y'].values)
    y.extend([np.nan, np.nan])
    new_reg_data['y'] = y
    new_reg_data.to_excel(outputfile)
    print("预测结果为:\n",new_reg_data.loc[2014:2015,:])

# 构建支持向量回归预测模型
def SVR():
    from sklearn.svm import LinearSVR

    inputfile = '../tmp/new_reg_data_GM11.xls'
    data = pd.read_excel(inputfile)
    feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
    data.index = range(1994, 2016)
    data_train = data.loc[range(1994, 2014)].copy()
    data_mean = data_train.mean()
    data_std = data_train.std()
    data_train = (data_train - data_mean)/data_std
    x_train = data_train[feature].to_numpy()
    y_train = data_train['y'].to_numpy()

    linearsvr = LinearSVR()
    linearsvr.fit(x_train, y_train)
    x = ((data[feature] - data_mean[feature])/data_std[feature]).to_numpy()

    data[u'y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
    # outputfile = '../tmp/new_reg_data_GM11_revenue.xls'
    # data.to_excel(outputfile)

    print("真实值与预测值分别为:\n",data[['y', 'y_pred']])

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
    plt.rcParams['axes.unicode_minus'] = False

    fig = data[['y', 'y_pred']].plot(subplots = True,style=['b-o', 'r-*'])
    plt.title("3126")
    plt.show()


statisticAnalysis(data)
corr = correlationCoefficientMatrix(data)
thermodynamic(corr)

grey()

SVR()

 

 

标签:因素,plt,预测,train,财政收入,np,new,data,reg
From: https://www.cnblogs.com/mintlyx/p/17182168.html

相关文章

  • 财政收入影响因素分析及预测
    importnumpyasnpimportpandasaspdinputfile='D:/anaconda/python-work/Three/data(1).csv'#输入的数据文件data=pd.read_csv(inputfile)#读取数据......
  • 财政收入影响因数分析及预测
    1.描述性统计分析#对各属性进行描述性统计分析defstatisticAnalysis():inputfile='../data/data.csv'#输出的数据文件data=pd.read_csv(inputfile)......
  • 财政预测
    #预测财政收入,2014、2015(y)神经网络,用到data_1importosimportnumpyasnpimportpandasaspdfromsklearn.linear_modelimportLassoLarsfromsklearn.linear_m......
  • 财政收入影响因素分析及预测
    一、财政收入影响因素分析描述性统计结果: importnumpyasnpimportpandasaspdinputfile='C:/Users/86133/Documents/WeChatFiles/wxid_ou51tgtht1bz22/FileStorag......
  • 预测财政
    #预测财政收入,2014、2015(y)神经网络,用到data_1importosimportnumpyasnpimportpandasaspdfromsklearn.linear_modelimportLassoLarsfromsklearn.linear_m......
  • 灰色预测(财政收入影响因素分析及预测)
    #-*-coding:utf-8-*-defGM11(x0):#自定义灰色预测函数importnumpyasnpx1=x0.cumsum()#1-AGO序列z1=(x1[:len(x1)-1]+x1[1:])/2.0#紧邻均值(ME......
  • 财政收入影响因素分析及预测
    importnumpyasnpimportpandasaspdinputfile='D:\data.csv'data=pd.read_csv(inputfile)#描述性统计分析#依次计算最小值、最大值、均值、标准差description=......
  • 财政收入影响因素分析及预测
    #描述性统计分析和相关系数矩阵importpandasaspdimportnumpyasnpinputfile='D:\大三下\大数据实验课\demo\data.csv'#输入数据的文件data=pd.read_csv(inputfil......
  • 灰色预测模型
    importmatplotlib.pyplotaspltimportpandasaspdimportnumpyasnpfromsklearn.linear_modelimportLassodata=pd.read_csv('./data/data.csv')lasso=Lasso(10......
  • 财政预测
    importnumpyasnpimportpandasaspdinputfile='E:\python数据分析\data.csv'#输入的数据文件data=pd.read_csv(inputfile)#读取数据#相关性分析corr......