题目 link
是莫比乌斯函数还是莫比乌斯反演捏?感觉好多所谓“莫比乌斯反演”题只要拿 \(\mu\) 性质给暴力替换一下就能做出来了,比如这题 qwq
答案是这个式子:\(\sum\limits_{i = 1}^{a}\sum\limits_{j = 1}^b [\gcd(i, j) = k]\),我们默认 \(n\le m\)。
套路操作是除以一个 \(k\),然后 \(\gcd(i, j)\) 就会变成互质的。所以是 \(\sum\limits_{i = 1}^{\lfloor\frac{a}{k}\rfloor}\sum\limits_{j = 1}^{\lfloor\frac{b}{k}\rfloor} [\gcd(i, j) = 1]\)。
然后也是一个很套路的东西,众所周知,\(\sum\limits_{d|n}\mu(d) = [n = 1]\),所以 \([\gcd(i, j) = 1] = \sum\limits_{d|\gcd(i, j)}\mu(d)\)
然后就会得到 \(\sum\limits_{i = 1}^{\lfloor\frac{a}{k}\rfloor}\sum\limits_{j = 1}^{\lfloor\frac{b}{k}\rfloor} \sum\limits_{d|\gcd(i, j)}\mu(d)\)。
根据套路,我们可以把 \(d\) 丢到前面,然后以 \(\mu(d)\) 为系数,得到这个 \(\sum\limits_{d = 1}^{n}\mu(d)\sum\limits_{i = 1}^{\lfloor\frac{a}{k}\rfloor}\sum\limits_{j = 1}^{\lfloor\frac{b}{k}\rfloor}[d|\gcd(i, j)]\)。
\([d|\gcd(i, j)]\) 等价于 \(d|i, d|j\),所以就是 \(\sum\limits_{d = 1}^{n}\mu(d)\sum\limits_{i = 1}^{\lfloor\frac{a}{k}\rfloor}\sum\limits_{j = 1}^{\lfloor\frac{b}{k}\rfloor}[d|i, d|j]\)。
到这里就明朗了吧!最后两个 sigma 很容易化掉,所以就有 \(\sum\limits_{d = 1}^{n}\mu(d)\lfloor\dfrac{a}{kd}\rfloor\lfloor\dfrac{b}{kd}\rfloor\)
后面那一坨明显可以整除分块搞掉。
喜闻乐见的代码
//SIXIANG
#include <iostream>
#define int long long
#define MAXN 500000
#define QWQ cout << "QWQ" << endl;
using namespace std;
bool flag[MAXN + 10];
int mu[MAXN + 10], pri[MAXN + 10], tot = 0, sum[MAXN + 10];
void prepare() {
mu[1] = 1;
for(int p = 2; p <= MAXN; p++) {
if(!flag[p]) {
mu[p] = -1;
pri[++tot] = p;
}
for(int i = 1; i <= tot && p * pri[i] <= MAXN; i++) {
flag[p * pri[i]] = 1;
if(p % pri[i] != 0)
mu[p * pri[i]] = mu[p] * mu[pri[i]];
else {
mu[p * pri[i]] = 0;
break;
}
}
}
for(int p = 1; p <= MAXN; p++)
sum[p] = sum[p - 1] + mu[p];
}
void init() {
int a, b, k;
cin >> a >> b >> k;
if(a > b) swap(a, b);
int A = a / k, B = b / k;
int l = 1, r = 1, ans = 0;
for(; l <= A; l = r + 1) {
r = min((A / (A / l)), ((B / (B / l))));
ans += ((sum[r] - sum[l - 1]) * (A / l) * (B / l));
}
cout << ans << endl;
}
signed main() {
prepare();
int T; cin >> T;
while(T--)
init();
}
标签:lfloor,frac,gcd,limits,题解,POI2007,rfloor,sum,ZAP
From: https://www.cnblogs.com/thirty-two/p/17178345.html