首页 > 其他分享 >RNN(cell)总结和实践

RNN(cell)总结和实践

时间:2022-09-07 13:22:15浏览次数:69  
标签:总结 loss 15 RNN cell Epoch Predicted hidden size

一、RNNCell:

1、使用实例 hello--ohlol

图示:

 

 要注意inputSize

 1 #载入数据
 2 
 3 import torch
 4 input_size = 4
 5 hidden_size = 4
 6 batch_size = 1
 7 
 8 idx2char = ['e', 'h', 'l', 'o']
 9 x_data = [1, 0, 2, 3, 3]    # hello中各个字符的下标
10 y_data = [3, 1, 2, 3, 2]    # ohlol中各个字符的下标
11 
12 one_hot_lookup = [[1, 0, 0, 0],
13                   [0, 1, 0, 0],
14                   [0, 0, 1, 0],
15                   [0, 0, 0, 1]]
16 x_one_hot = [one_hot_lookup[x] for x in x_data] # (seqLen, inputSize)
17 
18 inputs = torch.Tensor(x_one_hot).view(-1, batch_size, input_size)
19 labels = torch.LongTensor(y_data).view(-1, 1)   
20 # torch.Tensor默认是torch.FloatTensor是32位浮点类型数据,torch.LongTensor是64位整型
1 inputs.shape
2 labels.shape
3 #torch.Size([5, 1, 4]);torch.Size([5, 1]

1 inputs.shape2 labels.shape3 #torch.Size([5, 1, 4]);torch.Size([5, 1]) 

 1 #构建模型
 2 
 3 import torch.nn as nn
 4 
 5 class Model(nn.Module):
 6     def __init__(self, input_size, hidden_size, batch_size):
 7         super(Model, self).__init__()
 8         self.batch_size = batch_size
 9         self.input_size = input_size
10         self.hidden_size = hidden_size
11         self.rnncell = nn.RNNCell(input_size=self.input_size, hidden_size=self.hidden_size)
12 
13     def forward(self, inputs, hidden):
14         hidden = self.rnncell(inputs, hidden)   # (batch_size, hidden_size)
15         return hidden
16 
17     def init_hidden(self):
18         return torch.zeros(self.batch_size, self.hidden_size)
19 
20 net = Model(input_size, hidden_size, batch_size)
21 
22 criterion = torch.nn.CrossEntropyLoss()
23 optimizer = torch.optim.Adam(net.parameters(), lr=0.1)
 1 #模型训练
 2 
 3 epochs = 15
 4 
 5 for epoch in range(epochs):
 6     loss = 0
 7     optimizer.zero_grad()
 8     hidden = net.init_hidden()
 9     print('Predicted string:', end='')
10     for input, label in zip(inputs, labels):
11         hidden = net(input, hidden)
12         # 注意交叉熵在计算loss的时候维度关系,这里的hidden是([1, 4]), label是 ([1])
13         loss += criterion(hidden, label)
14         _, idx = hidden.max(dim = 1)
15         print(idx2char[idx.item()], end='')
16     loss.backward()
17     optimizer.step()
18     print(', Epoch [%d/15] loss=%.4f' % (epoch+1, loss.item()))
##结果
Predicted string:helhh, Epoch [1/15] loss=6.4109
Predicted string:ohloo, Epoch [2/15] loss=5.3787
Predicted string:ohloo, Epoch [3/15] loss=4.7781
Predicted string:ohloo, Epoch [4/15] loss=4.2434
Predicted string:ohlol, Epoch [5/15] loss=3.7612
Predicted string:ohlol, Epoch [6/15] loss=3.3989
Predicted string:ohlol, Epoch [7/15] loss=3.1192
Predicted string:ohlol, Epoch [8/15] loss=2.8756
Predicted string:ohlol, Epoch [9/15] loss=2.6559
Predicted string:ohlol, Epoch [10/15] loss=2.4753
Predicted string:ohlol, Epoch [11/15] loss=2.3358
Predicted string:ohlol, Epoch [12/15] loss=2.2265
Predicted string:ohlol, Epoch [13/15] loss=2.1403
Predicted string:ohlol, Epoch [14/15] loss=2.0739
Predicted string:ohlol, Epoch [15/15] loss=2.0232

2、使用cell时要注意:

(1)、输入和输出维度

(2)、序列长度

(3)、批处理大小

二、RNN

1、实例代码展示

 1 #基础数据
 2 import torch
 3 input_size = 4
 4 hidden_size = 4
 5 batch_size = 1
 6 seq_len = 5
 7 num_layers = 1
 8 
 9 idx2char = ['e', 'h', 'l', 'o']
10 x_data = [1, 0, 2, 3, 3]    # hello中各个字符的下标
11 y_data = [3, 1, 2, 3, 2]    # ohlol中各个字符的下标
12 
13 one_hot_lookup = [[1, 0, 0, 0],
14                   [0, 1, 0, 0],
15                   [0, 0, 1, 0],
16                   [0, 0, 0, 1]]
17 x_one_hot = [one_hot_lookup[x] for x in x_data] # (seqLen, inputSize)
18 
19 inputs = torch.Tensor(x_one_hot).view(seq_len, batch_size, input_size)
20 labels = torch.LongTensor(y_data)  
21 print(inputs.shape, labels.shape)

 #输出torch.Size([5, 1, 4]) torch.Size([5]) 

 1 #构建model
 2 import torch.nn as nn
 3 
 4 class Model(nn.Module):
 5     def __init__(self, input_size, hidden_size, batch_size, num_layers=1):
 6         super(Model, self).__init__()
 7         self.num_layers = num_layers
 8         self.batch_size = batch_size
 9         self.input_size = input_size
10         self.hidden_size = hidden_size
11         self.rnn = nn.RNN(input_size=self.input_size, hidden_size=self.hidden_size, )
12 
13     def forward(self, inputs):
14         hidden = torch.zeros(self.num_layers, self.batch_size, self.hidden_size)
15         out, _ = self.rnn(inputs, hidden)    # 注意维度是(seqLen, batch_size, hidden_size)
16         return out.view(-1, self.hidden_size) # 为了容易计算交叉熵这里调整维度为(seqLen * batch_size, hidden_size)
17 
18 net = Model(input_size, hidden_size, batch_size)
19 
20 criterion = torch.nn.CrossEntropyLoss()
21 optimizer = torch.optim.Adam(net.parameters(), lr=0.1)
 1 ##训练
 2 epochs = 15
 3 
 4 for epoch in range(epochs):
 5     optimizer.zero_grad()
 6     outputs = net(inputs) 
 7     # print(outputs.shape, labels.shape)
 8     # 这里的outputs维度是([seqLen * batch_size, hidden]), labels维度是([seqLen])
 9     loss = criterion(outputs, labels) 
10     loss.backward() 
11     optimizer.step()
12 
13     _, idx = outputs.max(dim=1) 
14     idx = idx.data.numpy() 
15     print('Predicted: ', ''.join([idx2char[x] for x in idx]), end='') 
16     print(', Epoch [%d/15] loss = %.3f' % (epoch + 1, loss.item()))
##输出
Predicted:  ololl, Epoch [1/15] loss = 1.189
Predicted:  ollll, Epoch [2/15] loss = 1.070
Predicted:  ollll, Epoch [3/15] loss = 0.976
Predicted:  ohlll, Epoch [4/15] loss = 0.883
Predicted:  ohlol, Epoch [5/15] loss = 0.788
Predicted:  ohlol, Epoch [6/15] loss = 0.715
Predicted:  ohlol, Epoch [7/15] loss = 0.652
Predicted:  ohlol, Epoch [8/15] loss = 0.603
Predicted:  ohlol, Epoch [9/15] loss = 0.570
Predicted:  ohlol, Epoch [10/15] loss = 0.548
Predicted:  ohlol, Epoch [11/15] loss = 0.530
Predicted:  ohlol, Epoch [12/15] loss = 0.511
Predicted:  ohlol, Epoch [13/15] loss = 0.488
Predicted:  ohlol, Epoch [14/15] loss = 0.462
Predicted:  ohlol, Epoch [15/15] loss = 0.439

2、注意要点:

(1)inputs维度是: (seqLen, batch_size, input_size)

(2)lables维度是: (seqLen * batch_size)

(2)outputs维度是: (seqLen, batch_size, hidden_size)

   为了能和labels做交叉熵,需要reshape一下: outputs.view(-1, hidden_size)

3、注释

  input_size和hidden_size: 输入维度和隐层维度

  batch_size: 批处理大小

  seq_len: 序列长度

  num_layers: 隐层数目

  

标签:总结,loss,15,RNN,cell,Epoch,Predicted,hidden,size
From: https://www.cnblogs.com/zc-dn/p/16665036.html

相关文章

  • Java8Stream流复习和api总结
    构建方式list.stream();Stream.of(list);基础常用APIStream<Number>stream=list.stream();//获取最大值stream.max(比较器);//获取最小值stream.min(比较器);......
  • ACM模式各种输入总结 C++
    一、整型数组输入:(很简单)在终端的一行中输入固定数目的整型数字,并存到数组中,中间以空格分隔。示例:3123intn;cin>>n;vector<int>nums(n);......
  • 10.10 斐波那契数列_本章总结
      #斐波那契数列 计算  1,1,2,3,5,8  后面的数为前面两数相加deffib(n):ifn==1:return1elifn==2:return1else:......
  • 资深技术笔译总结的这7条建议,看完提PR效率倍增
    战码先锋,PR征集令(以下简称“战码先锋”)第二期正如火如荼地进行中,涉及OpenAtomOpenHarmony(以下简称“OpenHarmony”)主干仓、SIG仓、三方库,共计1000+代码仓任君挑战。刚......
  • java poi - excel cell 设置自定义颜色
    XSSFCellStylecellStyle=wb.createCellStyle();cellStyle.setFillForegroundColor(newXSSFColor(newColor(195,227,255)));cellStyle.setFillPattern(FillPatter......
  • 助教总结(计算机组成原理)
    一、助教工作的具体职责和任务1.收作业在收集软件工程的作业后和与班级学委进行统计,并且批改卷子2.收集平时问题在一些理论性问题中我可以解决的,我会尽量给他们讲解,如果......
  • 20220906总结
    20220906三道模拟题第一道没有什么技术含量,也没有什么算法,只要注意不出一些小失误就可以了。第二题看到数据范围之后开始犯难,感觉想到的几种写法都无法拿到满分,其中有想......
  • Redis大key问题总结
    概述redis中的大key主要包括以下几个部分(超过M级别的):单个简单的key存储的value很大hash,set,zset,list中存储过多的元素一个集群存储了上亿的key大key有什么影响......
  • [转载]Qt内存泄漏总结(包括检测工具)
    原文链接:http://blog.csdn.net/taiyang1987912/article/details/29271549关于堆栈不清楚的可以参考这篇文章:http://blog.csdn.net/c_base_jin/article/details/25558929一......
  • 计算机网络面试知识点总结
    计算机网络tcp/ip五层模型tcp和udp的区别UDP头部包含了以下几个数据:两个十六位的端口号,分别为源端口(可选字段)和目标端口整个数据报文的长度整个数据报文的检验和......