[CF755G] PolandBall and Many Other Balls 题解
题意概括
有一排 \(n\) 个球,定义一个组可以只包含一个球或者包含两个相邻的球。现在一个球只能分到一个组中,求从这些球中取出 \(k\) 组的方案数。
\(n\le 10^9\),\(k<2^{15}\)。
题目分析
容易想到 \(dp\) 转移:设 \(f_{i,j}\) 表示考虑前 \(i\) 个球,取了 \(j\) 组的方案数,那么有转移 \(f_{i,j}=f_{i-1,j-1}+f_{i-1,j-2}+f_{i-1,j}\) ,暴力转移 \(O(nk)\) 。可以考虑多项式去优化,即令 \(F_i(x)=\sum_{j=0}^{k}f_{i,j}x^j\) ,则有:
\[F_i(x)=(1+x)\times F_{i-1}(x)+x\times F_{i-2} \]这个式子显然可以构造其母函数 \(G(F(x))\) ,那么就有(下文记 \(t=F(x)\) ,为一个多项式):
\[\begin{aligned} &G(t)=(1+x)\times t\times G(t)+x\times t^2 \times G(t)+1\\ &(1-(1+x)\times t-x\times t^2)G(t)=1\\ &G(t)=\frac{1}{1-(1+x)t-x\times t^2} \end{aligned} \]然后就是套路地解这个生成函数即可,设:
\[\begin{aligned} G(t)&=\frac{\mu}{1-At}+\frac{\varphi}{1-Bt}\\ &=\frac{\mu-B\mu t+\varphi -A\varphi t}{1-(A+B)t+ABt^2} \end{aligned} \]然后解方程组:
\[\left\{ \begin{matrix} \mu+\varphi=1\\ B\mu+A\varphi=0\\ A+B=1+x\\ AB=x \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} \mu=\frac{1+x+\sqrt{1+6x+x^2}}{2\sqrt{1+6x+x^2}}\\ \varphi=\frac{\sqrt{1+6x+x^2}-1-x}{2\sqrt{1+6x+x^2}}\\ A=\frac{1+x+\sqrt{1+6x+x^2}}{2}\\ B=\frac{1+x-\sqrt{1+6x+x^2}}{2}\\ \end{matrix} \right. \]所以说:
\[G(t)=\frac{(\frac{1+x+\sqrt{1+6x+x^2}}{2\sqrt{1+6x+x^2}})}{(1-\frac{1+x+\sqrt{1+6x+x^2}}{2})}+\frac{(\frac{\sqrt{1+6x+x^2}-1-x}{2\sqrt{1+6x+x^2}})}{(1-\frac{1+x-\sqrt{1+6x+x^2}}{2})} \]然后就得到了 \(G(t)\) 的每一项的系数,也即 \(F(x)\) 的通项公式:
\[\begin{aligned} G_i(t)=F_i(x)&=\frac{1+x+\sqrt{1+6x+x^2}}{2\sqrt{1+6x+x^2}}\times (\frac{1+x+\sqrt{1+6x+x^2}}{2})^{i}+\frac{\sqrt{1+6x+x^2}-1-x}{2\sqrt{1+6x+x^2}}\times (\frac{1+x-\sqrt{1+6x+x^2}}{2})^{i}\\\\ &=\frac{1}{\sqrt{1+6x+x^2}}\times ((\frac{1+x+\sqrt{1+6x+x^2}}{2})^{i+1}-(\frac{1+x-\sqrt{1+6x+x^2}}{2})^{i+1})\\\\ \end{aligned} \]由于 \(1+x-\sqrt{1+6x+x^2}\) 的常数项为 \(0\) ,所以说 \((\frac{1+x-\sqrt{1+6x+x^2}}{2})^{i+1}\) 的 \(x^0\) 到 \(x^{i+1}\) 项系数均为 \(0\) ,所以说式子可以进一步化简,变得十分优美 :
多项式快速幂就能解决(并且快速幂过程常数项一直为 \(1\) ,非常好写) ,下面附上代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 30;
const int M = 3e5;
const int mod = 998244353;
const int pr = 3;
const int ig = 332748118;
inline int add(int x, int y) {
x += y;
return x >= mod ? x - mod : x;
}
inline int del(int x, int y) {
x -= y;
return x < 0 ? x + mod : x;
}
int qpow(int a, int b) {
int res = 1;
while(b) {
if(b & 1) res = 1ll * res * a % mod;
a = 1ll * a * a % mod;
b >>= 1;
}
return res;
}
struct node {
int n, mx = 1, f[N], g[N];
void NTT(int *a, int len) {
int x, y, g, pw;
for(int j = len >> 1; j >= 1; j >>= 1) {
g = qpow(pr, (mod - 1) / (j << 1));
for(int i = 0; i < len; i += (j << 1)) {
pw = 1;
for(int k = 0; k < j; ++k, pw = 1ll * pw * g % mod) {
x = a[i + k]; y = a[i + j + k];
a[i + k] = add(x, y);
a[i + j + k] = 1ll * pw * del(x, y) % mod;
}
}
}
}
void INTT(int *a, int len) {
int x, y, g, pw;
for(int j = 1; j < len; j <<= 1) {
g = qpow(ig, (mod - 1) / (j << 1));
for(int i = 0; i < len; i += (j << 1)) {
pw = 1;
for(int k = 0; k < j; ++k, pw = 1ll * pw * g % mod) {
x = a[i + k]; y = 1ll * pw * a[i + j + k] % mod;
a[i + k] = add(x, y);
a[i + j + k] = del(x, y);
}
}
}
int Inv = qpow(len, mod - 2);
for(int i = 0; i < len; ++i) a[i] = 1ll * a[i] * Inv % mod;
}
void mul(int *a, int *b, int len) {
NTT(a, len); NTT(b, len);
for(int i = 0; i < len; ++i) a[i] = 1ll * a[i] * b[i] % mod;
INTT(a, len);
}
void INV(int *a, int *b, int len) {
static int A[N], B[N];
for(int i = 0; i < len; ++i) A[i] = a[i], a[i] = 0;
for(int i = 0; i < len; ++i) B[i] = b[i], b[i] = 0;
B[0] = qpow(A[0], mod - 2);
for(int j = 2; j < len; j <<= 1) {
for(int i = 0; i < (j << 1); ++i) a[i] = b[i] = 0;
for(int i = 0; i < j; ++i) a[i] = A[i];
for(int i = 0; i < (j >> 1); ++i) b[i] = B[i];
mul(a, b, j << 1);
for(int i = j; i < (j << 1); ++i) a[i] = 0;
for(int i = 0; i < j; ++i) a[i] = (mod - a[i]) % mod;
a[0] = add(a[0], 2);
NTT(a, j << 1);
for(int i = 0; i < (j << 1); ++i) a[i] = 1ll * a[i] * b[i] % mod;
INTT(a, j << 1);
for(int i = 0; i < j; ++i) B[i] = a[i];
}
for(int i = 0; i < len; ++i) a[i] = A[i], A[i] = 0;
for(int i = 0; i < len; ++i) b[i] = B[i], B[i] = 0;
}
void LN(int *a, int *b, int len) {
static int A[N], B[N];
for(int i = 0; i < len; ++i) A[i] = a[i], a[i] = 0;
for(int i = 0; i < len; ++i) B[i] = b[i], b[i] = 0;
INV(A, B, len);
for(int i = 0; i < len; ++i) b[i] = B[i];
for(int i = 0; i < (len >> 1) - 1; ++i) a[i] = 1ll * A[i + 1] * (i + 1) % mod;
for(int i = (len >> 1); i < len; ++i) a[i] = b[i] = 0;
mul(a, b, len);
for(int i = 1; i < (len >> 1); ++i) B[i] = 1ll * a[i - 1] * qpow(i, mod - 2) % mod;
B[0] = 0;
for(int i = 0; i < len; ++i) a[i] = A[i], A[i] = 0;
for(int i = 0; i < len; ++i) b[i] = B[i], B[i] = 0;
}
void EXP(int *a, int *b, int len) {
static int A[N], B[N];
for(int i = 0; i < len; ++i) A[i] = a[i], a[i] = 0;
for(int i = 0; i < len; ++i) B[i] = b[i], b[i] = 0;
B[0] = 1;
for(int j = 2; j < len; j <<= 1) {
for(int i = 0; i < (j << 1); ++i) a[i] = b[i] = 0;
for(int i = 0; i < j; ++i) a[i] = B[i];
LN(a, b, j << 1);
for(int i = j; i < (j << 1); ++i) b[i] = 0;
for(int i = 0; i < j; ++i) b[i] = del(A[i], b[i]);
b[0] = add(b[0], 1);
mul(a, b, j << 1);
for(int i = 0; i < j; ++i) B[i] = a[i];
for(int i = j; i < (j << 1); ++i) B[i] = 0;
}
for(int i = 0; i < len; ++i) a[i] = A[i], A[i] = 0;
for(int i = 0; i < len; ++i) b[i] = B[i], B[i] = 0;
}
void SQRT(int *a, int *b, int len) {
static int A[N], B[N];
for(int i = 0; i < len; ++i) A[i] = a[i], a[i] = 0;
for(int i = 0; i < len; ++i) B[i] = b[i], b[i] = 0;
B[0] = 1;
for(int j = 2; j < len; j <<= 1) {
for(int i = 0; i < (j << 1); ++i) a[i] = b[i] = 0;
for(int i = 0; i < (j >> 1); ++i) a[i] = b[i] = B[i];
mul(a, b, j);
for(int i = 0; i < j; ++i) a[i] = (a[i] + A[i]) % mod;
for(int i = 0; i < (j >> 1); ++i) b[i] = 2ll * B[i] % mod;
for(int i = (j >> 1); i < j; ++i) b[i] = 0;
INV(b, B, j << 1);
for(int i = j; i < (j << 1); ++i) B[i] = 0;
mul(a, B, j << 1);
for(int i = 0; i < j; ++i) B[i] = a[i];
for(int i = j; i < (j << 1); ++i) B[i] = 0;
}
for(int i = 0; i < len; ++i) a[i] = A[i];
for(int i = 0; i < len; ++i) b[i] = B[i];
}
void QPOW(int *a, int *b, int len, int val) {
LN(a, b, len);
for(int i = 0; i < (len >> 1); ++i) b[i] = 1ll * b[i] * val % mod;
EXP(b, a, len);
for(int i = 0; i < (len >> 1); ++i) b[i] = a[i];
}
void init() {while(mx <= n + n) mx <<= 1;}
}F, G;
int n, k;
int main() {
scanf("%d%d", &n, &k); int mem = k; k = min(k, n);
G.n = F.n = k; F.init(); G.init();
G.f[0] = 1; G.f[1] = 6; G.f[2] = 1;
G.SQRT(G.f, G.g, G.mx);
for(int i = 0; i < G.mx; ++i) G.f[i] = 0;
for(int i = G.n + 1; i < G.mx; ++i) G.g[i] = 0;
G.INV(G.g, G.f, G.mx);
for(int i = 0; i < G.mx; ++i) F.f[i] = G.g[i];
F.f[0] = add(F.f[0], 1); F.f[1] = add(F.f[1], 1);
for(int i = 0; i < F.mx; ++i) F.f[i] = 1ll * F.f[i] * 499122177 % mod;
F.QPOW(F.f, F.g, F.mx, n + 1);
for(int i = F.n + 1; i < F.mx; ++i) F.f[i] = 0;
F.mul(F.f, G.f, F.mx);
for(int i = F.n + 1; i < F.mx; ++i) F.f[i] = 0;
for(int i = 1; i <= mem; ++i) printf("%d ", F.f[i]);
return 0;
}
\(END.\)
标签:Balls,frac,int,题解,CF755G,sqrt,++,len,6x From: https://www.cnblogs.com/zyc070419-blog/p/17162322.html