import numpy as np def gelu(x): return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x**3))) def softmax(x): exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True)) return exp_x / np.sum(exp_x, axis=-1, keepdims=True) def layer_norm(x, g, b, eps: float = 1e-5): mean = np.mean(x, axis=-1, keepdims=True) variance = np.var(x, axis=-1, keepdims=True) return g * (x - mean) / np.sqrt(variance + eps) + b def linear(x, w, b): return x @ w + b def ffn(x, c_fc, c_proj): return linear(gelu(linear(x, **c_fc)), **c_proj) def attention(q, k, v, mask): return softmax(q @ k.T / np.sqrt(q.shape[-1]) + mask) @ v def mha(x, c_attn, c_proj, n_head): x = linear(x, **c_attn) qkv_heads = list(map(lambda x: np.split(x, n_head, axis=-1), np.split(x, 3, axis=-1))) casual_mask = (1 - np.tri(x.shape[0])) * -1e10 out_heads = [attention(q, k, v, casual_mask) for q, k, v in zip(*qkv_heads)] x = linear(np.hstack(out_heads), **c_proj) return x def transformer_block(x, mlp, attn, ln_1, ln_2, n_head): x = x + mha(layer_norm(x, **ln_1), **attn, n_head=n_head) x = x + ffn(layer_norm(x, **ln_2), **mlp) return x def gpt2(inputs, wte, wpe, blocks, ln_f, n_head): x = wte[inputs] + wpe[range(len(inputs))] for block in blocks: x = transformer_block(x, **block, n_head=n_head) return layer_norm(x, **ln_f) @ wte.T def generate(inputs, params, n_head, n_tokens_to_generate): from tqdm import tqdm for _ in tqdm(range(n_tokens_to_generate), "generating"): logits = gpt2(inputs, **params, n_head=n_head) next_id = np.argmax(logits[-1]) inputs = np.append(inputs, [next_id]) return list(inputs[len(inputs) - n_tokens_to_generate :]) def main(prompt: str, n_tokens_to_generate: int = 40, model_size: str = "124M", models_dir: str = "models"): from utils import load_encoder_hparams_and_params encoder, hparams, params = load_encoder_hparams_and_params(model_size, models_dir) input_ids = encoder.encode(prompt) assert len(input_ids) + n_tokens_to_generate < hparams["n_ctx"] output_ids = generate(input_ids, params, hparams["n_head"], n_tokens_to_generate) output_text = encoder.decode(output_ids) return output_text if __name__ == "__main__": import fire fire.Fire(main)
标签:inputs,head,return,np,numpy,generate,def From: https://www.cnblogs.com/qiaoqifa/p/17160570.html