原题
设\(V\)为n阶复方阵全体构成的线性空间,\(V\)上的线性变换\(\varphi\)定义为\(\varphi(X)=JXJ\),其中\(J=J_n(0)\)是特征值为\(0\)的\(n\)阶\(Jordan\)块. 试求\(\varphi\)的\(Jordan\)标准型.
推广
设\(V\)为n阶复方阵全体构成的线性空间,\(V\)上的线性变换\(\varphi\)定义为\(\varphi(X)=AXB\). \(A,B\)的\(Jordan\)标准型都为\(J_n(0)\),其中\(J_n(0)\)是特征值为\(0\)的\(n\)阶\(Jordan\)块. 试求\(\varphi\)的\(Jordan\)标准型.
解:
根据\(A\)的\(Jordan\)标准型可知,存在\(C^n\)上的\(n\)个线性无关的列向量\(\alpha_1,...\alpha_n\),st.\(A\alpha_1 = 0, A\alpha_2 = \alpha_1, ...,A\alpha_n = \alpha_{n-1}\)
由于\(B^{\prime}\)与\(B\)相似,同理可知存在\(C^n\)上的\(n\)个线性无关的列向量\(\beta_1,...\beta_n\),st.\(B^{\prime}\beta_1 = 0, B^{\prime}\beta_2 = \beta_1, ...,B^{\prime}\beta_n = \beta_{n-1}\)
若设\(\alpha_0 = 0, \beta_0 = 0\),则\(A\alpha_i = \alpha_{i-1}, \beta_j^{\prime}B = \beta_{j-1}^{\prime}\)\((i,j=1,...n)\)
进一步可知\(\varphi(\alpha_i \beta_j^{\prime})=\alpha_{i-1} \beta_{j-1}^{\prime}\)
设\(e_i = (0,..,0,1,0,..,0)^{\prime}\) (第\(i\)个元素是\(1\)),可知\(e_1,...e_n\)线性无关
因此存在可逆阵\(P,Q\),st.\(P\alpha_i = e_i\), \(Q^{\prime}\beta_j = e_j\)
定义\(V\)上的线性变换\(\psi\): \(\psi(X)=PXQ\), 容易验证\(\psi\)是一个双射,且满足\(\psi(\alpha_i \beta_j^{\prime}) = e_ie_j^{\prime}\)
由于\(e_ie_j^{\prime}\)是\(n^2\)个线性无关的矩阵,因此\(\alpha_i \beta_j^{\prime}\)也是\(n^2\)个线性无关的矩阵且构成\(V\)的一组基.
在这组基上可以得到\(\varphi\)的循环轨道:
因此,\(\varphi\)的\(Jordan\)标准型为\(diag\{J_1(0),J_2(0),...,J_{n-1}(0),J_n(0),J_{n-1}(0),...,J_2(0),J_1(0)\}\)