一、地址映射
MMU 全称叫做 Memory Manage Unit,也就是内存管理单元。MMU 主要完成的功能如下:
①、完成虚拟空间到物理空间的映射。
②、内存保护,设置存储器的访问权限,设置虚拟存储空间的缓冲特性。
Linux 内核启动的时候会初始化 MMU,设置好内存映射,设置好以后 CPU 访问的都是虚拟地址。就不能直接操作 内存/寄存器 地址,因此必须得到寄存器物理地址在 Linux 系统里面对应的虚拟地址。物理内存和虚拟内存之间的转换,需要用到两个函数:ioremap 和 iounmap。
1、ioremap 函数
ioremap 函数用于获取指定物理地址空间对应的虚拟地址空间,定义在
arch/arm/include/asm/io.h 文件中,定义如下:
#define ioremap(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE)
void __iomem * __arm_ioremap(phys_addr_t phys_addr, size_t size,
unsigned int mtype)
{
return arch_ioremap_caller(phys_addr, size, mtype,
__builtin_return_address(0));
}
ioremap 是个宏,有两个参数:cookie 和 size,真正起作用的是函数__arm_ioremap,此函数有三个参数和一个返回值,含义如下:
phys_addr:要映射给的物理起始地址。
size:要映射的内存空间大小。
mtype:ioremap 的类型,可以选择 MT_DEVICE、MT_DEVICE_NONSHARED、
MT_DEVICE_CACHED 和 MT_DEVICE_WC。ioremap 函数选择 MT_DEVICE。
返回值:__iomem 类型的指针,指向映射后的虚拟空间首地址。
2、iounmap 函数
卸载驱动的时候需要使用 iounmap 函数释放掉 ioremap 函数所做的映射,iounmap 函数原型如下:
void iounmap (volatile void __iomem *addr)
iounmap 只有一个参数 addr,此参数就是要取消映射的虚拟地址空间首地址。
二、I/O 内存访问函数
使用 ioremap 函数将寄存器的物理地址映射到虚拟地址以后,我们就可以直接通过指针访问这些地址,但是 Linux 内核不建议这么做,而是推荐使用一组操作函数来对映射后的内存进行读写操作。
1、读操作函数
读操作函数有如下几个:
u8 readb(const volatile void __iomem *addr)
u16 readw(const volatile void __iomem *addr)
u32 readl(const volatile void __iomem *addr)
readb、readw 和 readl 这三个函数分别对应 8bit、16bit 和 32bit 读操作,参数 addr 就是要读取写内存地址,返回值就是读取到的数据。
2、写操作函数
写操作函数有如下几个:
void writeb(u8 value, volatile void __iomem *addr)
void writew(u16 value, volatile void __iomem *addr)
void writel(u32 value, volatile void __iomem *addr)
writeb、writew 和 writel 这三个函数分别对应 8bit、16bit 和 32bit 写操作,参数 value 是要写入的数值,addr 是要写入的地址。
三、LED 灯驱动程序编写
新建 led.c 文件,此文件就是 led 的驱动文件,在 led.c 里面输入如下内容:
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#define LED_MAJOR 200 /* 主设备号 */
#define LED_NAME "led" /* 设备名字 */
#define LEDOFF 0 /* 关灯 */
#define LEDON 1 /* 开灯 */
/* 寄存器物理地址 */
#define CCM_CCGR1_BASE (0X020C406C)
#define SW_MUX_GPIO1_IO03_BASE (0X020E0068)
#define SW_PAD_GPIO1_IO03_BASE (0X020E02F4)
#define GPIO1_DR_BASE (0X0209C000)
#define GPIO1_GDIR_BASE (0X0209C004)
/* 映射后的寄存器虚拟地址指针 */
static void __iomem *IMX6U_CCM_CCGR1;
static void __iomem *SW_MUX_GPIO1_IO03;
static void __iomem *SW_PAD_GPIO1_IO03;
static void __iomem *GPIO1_DR;
static void __iomem *GPIO1_GDIR;
/*
* @description : LED 打开/关闭
* @param - sta : LEDON(0) 打开 LED,LEDOFF(1) 关闭 LED
* @return : 无
*/
void led_switch(u8 sta)
{
u32 val = 0;
if(sta == LEDON) {
val = readl(GPIO1_DR);
val &= ~(1 << 3);
writel(val, GPIO1_DR);
}else if(sta == LEDOFF) {
val = readl(GPIO1_DR);
val|= (1 << 3);
writel(val, GPIO1_DR);
}
}
/*
* @description : 打开设备
* @param – inode : 传递给驱动的 inode
* @param - filp : 设备文件,file 结构体有个叫做 private_data 的成员变量
* 一般在 open 的时候将 private_data 指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int led_open(struct inode *inode, struct file *filp)
{
return 0;
}
/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
return 0;
}
/*
* @description : 向设备写数据
* @param - filp : 设备文件,表示打开的文件描述符
* @param - buf : 要写给设备写入的数据
* @param - cnt : 要写入的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 写入的字节数,如果为负值,表示写入失败
*/
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue;
unsigned char databuf[1];
unsigned char ledstat;
retvalue = copy_from_user(databuf, buf, cnt);
if(retvalue < 0) {
printk("kernel write failed!\r\n");
return -EFAULT;
}
ledstat = databuf[0]; /* 获取状态值 */
if(ledstat == LEDON) {
led_switch(LEDON); /* 打开 LED 灯 */
} else if(ledstat == LEDOFF) {
led_switch(LEDOFF); /* 关闭 LED 灯 */
}
return 0;
}
/*
* @description : 关闭/释放设备
* @param – filp : 要关闭的设备文件(文件描述符)
* @return : 0 成功;其他 失败
*/
static int led_release(struct inode *inode, struct file *filp)
{
return 0;
}
/* 设备操作函数 */
static struct file_operations led_fops = {
.owner = THIS_MODULE,
.open = led_open,
.read = led_read,
.write = led_write,
.release = led_release,
};
/*
* @description : 驱动入口函数
* @param : 无
* @return : 无
*/
static int __init led_init(void)
{
int retvalue = 0;
u32 val = 0;
/* 初始化 LED */
/* 1、寄存器地址映射 */
IMX6U_CCM_CCGR1 = ioremap(CCM_CCGR1_BASE, 4);
SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);
SW_PAD_GPIO1_IO03 = ioremap(SW_PAD_GPIO1_IO03_BASE, 4);
GPIO1_DR = ioremap(GPIO1_DR_BASE, 4);
GPIO1_GDIR = ioremap(GPIO1_GDIR_BASE, 4);
/* 2、使能 GPIO1 时钟 */
val = readl(IMX6U_CCM_CCGR1);
val &= ~(3 << 26); /* 清除以前的设置 */
val |= (3 << 26); /* 设置新值 */
writel(val, IMX6U_CCM_CCGR1);
/* 3、设置 GPIO1_IO03 的复用功能,将其复用为
* GPIO1_IO03,最后设置 IO 属性。
*/
writel(5, SW_MUX_GPIO1_IO03);
/* 寄存器 SW_PAD_GPIO1_IO03 设置 IO 属性 */
writel(0x10B0, SW_PAD_GPIO1_IO03);
/* 4、设置 GPIO1_IO03 为输出功能 */
val = readl(GPIO1_GDIR);
val &= ~(1 << 3); /* 清除以前的设置 */
val |= (1 << 3); /* 设置为输出 */
writel(val, GPIO1_GDIR);
/* 5、默认关闭 LED */
val = readl(GPIO1_DR);
val |= (1 << 3);
writel(val, GPIO1_DR);
/* 6、注册字符设备驱动 */
retvalue = register_chrdev(LED_MAJOR, LED_NAME, &led_fops);
if(retvalue < 0){
printk("register chrdev failed!\r\n");
return -EIO;
}
return 0;
}
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static void __exit led_exit(void)
{
/* 取消映射 */
iounmap(IMX6U_CCM_CCGR1);
iounmap(SW_MUX_GPIO1_IO03);
iounmap(SW_PAD_GPIO1_IO03);
iounmap(GPIO1_DR);
iounmap(GPIO1_GDIR);
/* 注销字符设备驱动 */
unregister_chrdev(LED_MAJOR, LED_NAME);
}
module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("KODO");
标签:__,LED,addr,void,笔记,ioremap,IMX6ULL,include,iomem
From: https://www.cnblogs.com/KuDianWanJia/p/17130670.html