源码
prob.py
import random, os
from Crypto.Util.number import getPrime, bytes_to_long
p = getPrime(1024)
q = getPrime(1024)
n = p * q
flag = open('flag','rb').read()
pad_length = 256 - len(flag)
m = bytes_to_long(os.urandom(pad_length) + flag)
assert(m < n)
es = [random.randint(1, 2**512) for _ in range(64)]
cs = [pow(m, p + e, n) for e in es]
print(es)
print(cs)
思路
Recover N
题目给出了64组
\[c_i\equiv m^{p+e_i} \pmod{n} \]但是并没有给模数\(n\)。其实这类题目在N1CTF(EzDLP)以及maple师傅的另一道题目中出现过。
需要恢复模数,就需要构造出像这样的式子
\[\begin{aligned} C &\equiv 0 \pmod{n} \\ C &=Kn \end{aligned} \]如果有两个或多个像这样子的同余式,就可以用\(\gcd(C_1, C_2)\)来恢复\(n\)。如果我们能找到多组\(a_i\),并且\(a_i\)中有正数也存在负数。使得
\[\begin{aligned} \prod c_i^a \equiv m^{p\sum{a_i}}\cdot m^{\sum{e_i\cdot a_i}}\equiv 1 \pmod{n} \end{aligned} \]由于我们不知道\(n\),所以不能直接计算模逆,但是可以写成
\[\prod{c_{i}^{a_i}}\equiv \prod_{a_i\ge{0}}{m^{p\sum{a_i}}\cdot m^{\sum{a_ie_i}}} * \prod_{a_i<{0}}{m^{p\sum{a_i}}\cdot m^{\sum{a_ie_i}}} \equiv 1 \pmod{n} \]两边同乘\(\prod_{a_i<{0}}{m^{p\sum{-a_i}}\cdot m^{\sum{-a_ie_i}}}\)
\[\begin{aligned} \prod{c_{i}^{a_i}}\equiv \prod_{a_i\ge{0}}{m^{p\sum{a_i}}\cdot m^{\sum{a_ie_i}}} \equiv \prod_{a_i<{0}}{m^{p\sum{-a_i}}\cdot m^{\sum{-a_ie_i}}} \pmod{n} \end{aligned} \]移项
\[\prod_{a_i\ge{0}}{m^{p\sum{a_i}}\cdot m^{\sum{a_ie_i}}} - \prod_{a_i<{0}}{m^{p\sum{-a_i}}\cdot m^{\sum{-a_ie_i}}} \pmod{n} \equiv 0 \pmod{n} \]即
\[\prod_{a_i\ge{0}}{c_{i}^{a_i}} - \prod_{a_i<{0}}{c_{i}^{-a_i}}\equiv 0 \pmod{n} \]这样就找到了一开始说的同余式的形式。满足上面等式的\(a_i\)一定满足
-
1 \(\sum{e_i*a_i} = 0\)
-
2 \(\sum{a_i}=0\)
于是就可以构造格子
\[L= \left[\begin{array}{cccccc} e_0 & 1 & 1 & 0 & \cdots & 0 & 0 \\ e_1 & 1 & 0 & 1 & \cdots & 0 & 0 \\ & \vdots & & &\ddots & & \\ e_{62} & 1 & 0 & 0 & \cdots & 1 & 0 \\ e_{63} & 1 & 0 & 0 & \cdots & 0 & 1 \end{array}\right] \]类似于背包问题的格,只不过背包问题中求解的向量只有0和1。
可以得到
\[[a_0, a_1,\cdots,a_{62}, a_{63}]\cdot L=[0, 0,a_0, a_1,\cdots,a_{62}, a_{63}] \]由于我们要保证\([0,0, a_0, a_1, \cdots, a_{62}, a_{63}]\)在格中足够小,并且可以找到多组\(a_i\),可以在第一列和第二列乘一个大的系数。
from sage.all import *
with open('output.txt') as f:
es = eval(f.readline().strip())
cs = eval(f.readline().strip())
L = matrix(es).T.augment(matrix([1]*len(es)).T)
L = L.augment(matrix.identity(len(es)))
L[:, 0] *= 2**512
L[:, 1] *= 2**512
L = L.LLL()
assert sum([a*e for a, e in zip(L[0][2:], es)]) == 0
assert sum([b*e for b, e in zip(L[1][2:], es)]) == 0
assert sum(L[0]) == 0
assert sum(L[1]) == 0
实际上不只前两个向量满足等式,不过我们只需要两个\(kn\)就可以用gcd来恢复n了。
recover_n.py
def get_kn(an):
prod_p = 1
prod_n = 1
for i, a in enumerate(an):
if a < 0:
prod_n *= cs[i]**(-a)
else:
prod_p *= cs[i]**(a)
return prod_p - prod_n
n1 = get_kn(L[0][2:])
n2 = get_kn(L[1][2:])
n = gcd(n1, n2)
for i in range(2, 300):
while n % i == 0:
n //= i
print(n)
可能是由于\(a_i\)比较接近的原因,在计算gcd后得到的n依然很大,但是通过遍历一些小的因数就可以得到真正的n
Common Modulus Attack
在得到n后,再来看
\[c_i\equiv m^{p+e_i}\equiv m^p\cdot m^{e_i} \]而且\(m^p\)是固定的,利用任意两组\(c_i\)就可以消去\(m^p\)
\[\begin{aligned} c_i\equiv m^p\cdot m^{e_i} \\ c_j\equiv m^p\cdot m^{e_j} \\ c^i\cdot c_j^{-1} \equiv m^{e_i-e_j} \pmod{n} \end{aligned} \]只要找到两个互质的\(e_i - e_j\)就可以很轻松的得到flag
common_modulus_attack.py
n = 17724789252315807248927730667204930958297858773674832260928199237060866435185638955096592748220649030149566091217826522043129307162493793671996812004000118081710563332939308211259089195461643467445875873771237895923913260591027067630542357457387530104697423520079182068902045528622287770023563712446893601808377717276767453135950949329740598173138072819431625017048326434046147044619183254356138909174424066275565264916713884294982101291708384255124605118760943142140108951391604922691454403740373626767491041574402086547023530218679378259419245611411249759537391050751834703499864363713578006540759995141466969230839
delta_e1 = es[1] - es[0]
for i in range(64):
delta_e2 = es[i] - es[1]
if delta_e2 > 0 and gcd(delta_e2, delta_e1) == 1:
break
c1 = (cs[1] * inverse_mod(cs[0], n)) % n
c2 = (cs[i] * inverse_mod(cs[1], n)) % n
def attack(c1, c2, e1, e2):
g, a, b = xgcd(e1, e2)
if g != 1:
return
return power_mod(c1, a, n) * power_mod(c2, b, n) % n
m = attack(c1, c2, delta_e1, delta_e2)
from Crypto.Util.number import long_to_bytes
print(long_to_bytes(m))
flag: hitcon{K33p_ev3rythIn9_1nd3p3ndent!}
总结
整体复现下来,发现以前还是有很多细节没有弄懂,实际上很早之前就看过了maple师傅出的那道on_modulus,但是在hitcon的比赛中还有之前的N1CTF都没有用上。
标签:cdot,sum,Secret,CTF,2022,cs,prod,es,equiv From: https://www.cnblogs.com/tr0uble/p/17114212.html