欧拉函数,枚举
题意
给定整数 \(n(1<=n<=10^5)\), 对于所有的正整数三元组 \((a,b,c)\) ,求 \(lcm(c,gcd(a,b))\) 的和
思路
对于数论题可以多尝试几种枚举顺序,可能会利用到某些性质优化
首先若枚举 c, 再枚举 a, 复杂度为 \(O(n^2)\)
枚举 a, b 也是 \(O(n^2)\)
若枚举 \(d=gcd(a,b)\), 再枚举 \(a+b=t*d\;(t>=2)\)
即从 \([1,n]\)枚举 d,t 从 2 枚举到 t * d > n, 根据调和级数,枚举的复杂度为 \(O(nlogn)\)
此时 \(gcd(a,b)=d, a+b=t*d, c=n-t*d\)
找到有多少对 \((a,b)\), 满足 \(gcd(a,b)=d\;且\;a+b=t*d\),即可
同时除以 d, 即找到有多少对 \((a,b)\), 满足 \(a+b=t\) 且 a,b 互质,答案即为 \(\phi(t)\)
因此本次枚举对答案的贡献为 \(\phi(t)*lcm(n-t*d,d)\)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
using namespace std;
#define endl "\n"
typedef long long ll;
typedef pair<int, int> PII;
const int N = 1e5 + 10, mod = 1e9 + 7;
int n;
int phi[N];
int pr[N], p[N], pe[N], cnt;
void get_primes(int n)
{
p[1] = 1;
for (int i = 2; i <= n; i++)
{
if (!p[i])
{
p[i] = i;
pr[++cnt] = i;
pe[i] = i;
}
for (int j = 1; j <= cnt && pr[j] <= n / i; j++)
{
p[i*pr[j]] = pr[j];
if (p[i] == pr[j])
{
pe[i*pr[j]] = pe[i] * pr[j];
break;
}
pe[i*pr[j]] = pr[j];
}
}
}
void presolve(int n)
{
phi[1] = 1;
for (int i = 2; i <= n; i++)
{
if (pe[i] != i)
phi[i] = phi[i/pe[i]] * phi[pe[i]];
else
phi[i] = i / p[i] * (p[i] - 1);
}
}
ll gcd(ll a, ll b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
return a / gcd(a, b) * b % mod;
}
int main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n;
get_primes(n);
presolve(n);
ll ans = 0;
for (int d = 1; d <= n; d++)
{
for (int t = 2; t * d <= n; t++)
{
int c = n - t * d;
ans += lcm(c, d) * phi[t] % mod;
ans %= mod;
}
}
cout << ans << endl;
return 0;
}
标签:phi,Madoka,gcd,int,University,818,枚举,include
From: https://www.cnblogs.com/hzy717zsy/p/16655486.html