Madoka and Strange Thoughts
唯一分解定理
\[gcd(a, b) = p_1^{min(ak_1, bk_1)} * p_2^{min(ak_2, bk_2)}... \]\[lcm(a, b) = p_1^{max(ak_1, bk_1)} * p_2^{max(ak_2, bk_2)}... \]根据上面两个式子就可以知道 \(\frac{lcm(a,b)}{gcd(a,b)}\) 其实就是质因数最大最小次幂相差多少
因为题目说 \(\frac{lcm(a,b)}{gcd(a,b)} \le 3\),因此 \(a\) 和 \(b\) 之间就只能满足倍数为 \(1\)、\(2\)、\(3\) 倍
下次见到要多想想上面两个式子
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <string>
#include <queue>
#include <functional>
#include <map>
#include <set>
#include <cmath>
#include <cstring>
#include <deque>
#include <stack>
#include <ctime>
#include <cstdlib>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
const ll maxn = 2e5 + 10;
const ll inf = 1e17 + 10;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while(t--)
{
int n;
cin >> n;
int ans = n / 3 + n / 2;
ans *= 2;
ans += n;
cout << ans << "\n";
}
return 0;
}
标签:Madoka,cin,int,ak,Codeforces,bk,818,include
From: https://www.cnblogs.com/dgsvygd/p/16651802.html