首页 > 其他分享 >电子设计教程11:电荷泵负压输出电路

电子设计教程11:电荷泵负压输出电路

时间:2023-01-11 12:38:14浏览次数:41  
标签:11 输出 Vh 电荷泵 负压 压降 电压 电子设计


  参考电荷泵倍压输出电路,把参考电压由Vcc改为GND,即可得到电荷泵负压输出电路。

电子设计教程11:电荷泵负压输出电路_测试点


  当Vin为高电平Vh时,T1测试点的电压VT1是GND(为了简便起见,忽略二极管的压降) Vin为电容C1充电,使C1左右两端的左右两端的电压差Vh。充电电流通过D1到达GND,同时也会使C2储存一些电荷。当Vin为低电平时,由于电容两端电压不会突变,所以对于电容C1来说,左右两端的电压差仍是Vh,左侧变为低电平以后,右侧VT1就变为了-Vh。

  此时,输出电流的方向是从Vo到T1,忽略D2上的压降,Vo的值将会介于0V与-Vh之间,实现了负压输出,并且受Vin频率与有效值影响。

  以上分析中忽略了二极管的压降,实际应用中为了减小二极管的压降的影响,选用了压降较低的肖特基二极管。可以看出,不论是倍压还是负压,输出电压都依赖于输出电容储存的能量,所以电荷泵电路一般不用于大电流电路。一般用于DC/DC转换器辅助电压输出。

下图是电荷泵负压输出电路中,C1电压与输出电压的波形。

电子设计教程11:电荷泵负压输出电路_测试点_02


标签:11,输出,Vh,电荷泵,负压,压降,电压,电子设计
From: https://blog.51cto.com/u_12001544/6002113

相关文章

  • 电子设计教程12:Buck降压电路
      我们仍然使用MC34063芯片,来设计一个DC-DC降压电路,实现直流12V转5V。Buck变换器  Buck变换器是开关电源基本拓扑结构的一种,Buck变换器又称为降压变换器,是一种对输入电......
  • 电子设计教程13:反相Buck变换器
      Buck变换器是开关电源基本拓扑结构的一种,在此基础上增加负压输出的功能,甚至比电荷泵电路还要简单。  反相Buck变换器的英文称呼是“InvertingBuck-Boost”,直译过来......
  • 电子设计教程14:三极管的放大原理
      关于三极管的原理,前人之述备矣,本文只强调一点:三极管是电流型放大器件,放大基极电流。  放大是对模拟信号最基本的处理,在实验和生产过程中,从传感器获得的电信号都很微......
  • 电子设计教程15:三极管电平转换电路设计
      在数字电路的领域,常常把电压简化为电平,来描述逻辑状态。比如TTL电平信号规定,+5V等价于逻辑“1”,也称为高电平,0V等价于逻辑“0”,也就是低电平。数字电路里,只有0和1两个状......
  • 电子设计教程17:从共射极放大电路到射极跟随电路
    共射极放大电路板的输出阻抗  在上一节,提到过共射极放大电路的输出阻抗是R2(更通用的写法可能是Rc)。推导这个结论的过程较复杂,会用到等效电路法,并用诺顿定理将放大电路的......
  • HAL库教程11:定时器的缓冲功能与影子寄存器
      在STM32的定时器中,TIMx_PSC、TIM_ARR两个寄存器加上捕捉比较模块中TIMX_CCR寄存器,它们都可以动态修改。不过他们的修改和生效可能不在同一个时刻,或者说,修改过后立即生......
  • 电子设计教程20:晶体管负反馈放大电路的参数设计
    放大倍数的推导  我们假设的电路在没有负反馈的时候,电路增益为A(也称为开环增益,或者裸增益,等于各极增益的乘积)。实际放大倍数A_v可以表示为:  这个公式可以推导出来,但推......
  • 电子设计教程18:射极跟随电路的参数设计
      射极跟随电路的原理图在上一节我们已经通过理论分析大致画了出来。接下来求从“设计的角度”出发,思考射极跟随电路的原理。不但需要计算各器件的参数,还要进行参数调试。......
  • 电子设计教程22:虚短与虚断
      “虚短”与“虚断”是非常重要的两个概念。在分析运放的输入信号与输出信号的关系时,这是两个基本的出发点。  当运放引入负反馈的时候,或者说工作在“线性区”的时候,......
  • 解决最新版W11无法跳过欢迎页面
    之前在安装Win11最新版系统时发现没有网卡驱动,也无法跳过引导页面,无奈只能安装Win10再升级到Win11,现在提供解决方法。按下Shift+F10,输入OOBE\BypassNRO.com并回......