记两线段为\(AB\)与\(CD\)
一、方法一
1. 先判断线段是否共线
依据共线向量叉乘为零来判断
\(\vec{AB}\)与\(\vec{CD}\)叉乘是否为0,如果为0则共线
2. 在不共线情况下判断是否相交
依据\(0 \leq t \leq 1\)且\(0 \leq u \leq 1\)来判断,其中\(t\)和\(u\)的推导过程如下:
假设交点为\(P\),则有\(P = A + \vec{AB} * t, \quad t \in [0, 1]\)且 \(P = C + \vec{CD} * u, \quad u \in [0, 1]\)
即
\(A + \vec{AB} * t = C + \vec{CD} * u \quad ==> \quad \vec{AB} * t = \vec{AC} + \vec{CD}*u\)
由于向量自身的叉乘为0,所以上式两边同时叉乘\(\vec{CD}\)可得:
\(\vec{CD} \times \vec{AB} * t = \vec{CD} \times \vec{AC}\),
变形可得:
\(t = \frac{\vec{CD} \times \vec{AC}}{\vec{CD} \times \vec{AB}}, t \in [0, 1]\)
同理,两边同时叉乘\(\vec{AB}\)可得:\(-\vec{AB} \times \vec{CD} * u = \vec{AB} \times \vec{AC}\),所以:
\(u = \frac{\vec{AB} \times \vec{AC}}{\vec{CD} \times \vec{AB}}, u \in [0, 1]\)
3. 在相交的情况下计算交点
依据第2步计算的\(t\)和\(u\),代入:\(P = A + \vec{AB} * t, \quad t \in [0, 1]\)且 \(P = C + \vec{CD} * u, \quad u \in [0, 1]\)即可求出交点\(P\)的坐标
代码实现
struct Point {
float x, y;
Point(const float& px = 0, const float& py = 0) : x(px), y(py) {}
Point operator+(const Point& p) const {
return Point(x + p.x, y + p.y);
}
Point& operator+=(const Point& p) {
x += p.x;
y += p.y;
return *this;
}
Point operator-(const Point& p) const {
return Point(x - p.x, y - p.y);
}
Point operator*(const float coeff) const {
return Point(x * coeff, y * coeff);
}
};
float Dot2d(const Point & A, const Point & B) {
return A.x * B.x + A.y * B.y;
}
float Cross2d(const Point & A, const Point & B) {
return A.x * B.y - B.x * A.y;
}
bool IsInsert(const Point& A, const Point& B, const Point& C, const Point&D)
{
Point AB = B - A;
Point CD = D - C;
float det = Cross2d(CD , AB);
// This takes care of parallel lines
if (std::fabs(det) <= 1e-14) {
return false;
}
Point AC= C - A;
double t = Cross2d(CD, AC) / det;
double u = Cross2d(AB, AC) / det;
if (t > -EPS && t < 1.0f + EPS && u > -EPS && u < 1.0f + EPS) {
return true;
// intersections P = A + AB * t;
}
}
二、方法二
1. 先判断线段是否共线
同方法一
2. 在不共线情况下判断是否相交
依据线段相交则一条线段两端点位于另一线段两侧来判断
相交情况下有如下两种情形:
判断是否在两侧可以依据两个向量的叉乘(右手法则),如下:
\(\vec{OA} \times \vec{OB} > 0\),则\(\vec{OB}\)在\(\vec{OA}\)的逆时针方向
\(\vec{OB} \times \vec{OA} < 0\),则\(\vec{OA}\)在\(\vec{OB}\)的顺时针方向
所以在相交的两种情况下有:
- 情况1
点\(C\)和\(D\)在\(AB\)两侧,则有:
\((\vec{AC} \times \vec{AB}) \cdot (\vec{AD} \times \vec{AB}) < 0\)
点\(A\)和\(B\)在\(CD\)两侧,则有:
\((\vec{CA} \times \vec{CD}) \cdot (\vec{CB} \times \vec{CD}) < 0\)
- 情况2
由于端点在线段上,所以有一个叉乘为0,因此:
\((\vec{AC} \times \vec{AB}) \cdot (\vec{AD} \times \vec{AB}) = 0\) 且 \((\vec{CA} \times \vec{CD}) \cdot (\vec{CB} \times \vec{CD}) = 0\)
代码实现
bool IsInsert(const Point& A, const Point& B, const Point& C, const Point&D)
{
Point AB = B - A;
Point CD = D - C;
Point AC = C - A;
Point AD = D - A;
Point CB = B - C;
Point CA = -AC;
float det = Cross2d(CD , AB);
// This takes care of parallel lines
if (std::fabs(det) <= 1e-14) {
return false;
}
if (Cross2D(AC, AB) * Cross2D(AD, AB) <= EPS && Cross2D(CA, CD) * Cross2D(CB, CD)< EPS) {
return true;
}
}
参考链接
line_intersection
Two_line_segments