首页 > 其他分享 >三角函数恒等变形

三角函数恒等变形

时间:2023-01-03 22:44:25浏览次数:42  
标签:cos frac 三角函数 变形 beta sin notag alpha 恒等

基本性质

\[\sin^2\alpha+\cos^2\alpha=1 \]

\[\tan\alpha=\frac{\sin\alpha}{\cos\alpha} \]

和差角公式

\[\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta \]

\[\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta \]

\[\tan(\alpha\pm\beta)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} \]

二倍角公式

\[\sin2\alpha=2\sin\alpha\cos\alpha \]

\[\cos2\alpha=\cos^2\alpha-\sin^2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1 \]

\[\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha} \]

降幂公式

\[\sin\alpha\cos\alpha=\frac12\sin2\alpha \]

\[\sin^2\alpha=\frac{1-\cos2\alpha}2 \]

\[\cos^2\alpha=\frac{1+\cos2\alpha}2 \]

一点也不万能的公式

\[\sin\alpha=\frac{2\tan\frac\alpha2}{1+\tan^2\frac\alpha2} \]

\[\cos\alpha=\frac{1-\tan^2\frac\alpha2}{1+\tan^2\frac\alpha2} \]

积化和差

\[\sin\alpha\cos\beta=\frac12\left[\sin(\alpha+\beta)+\sin(\alpha-\beta)\right] \]

\[\cos\alpha\sin\beta=\frac12\left[\sin(\alpha+\beta)-\sin(\alpha-\beta)\right] \]

\[\sin\alpha\sin\beta=-\frac12\left[\cos(\alpha+\beta)-\cos(\alpha-\beta)\right] \]

\[\cos\alpha\cos\beta=\frac12\left[\cos(\alpha+\beta)+\cos(\alpha-\beta)\right] \]

和差化积

\[\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}2\cos\frac{\alpha-\beta}2 \]

\[\sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}2\sin\frac{\alpha-\beta}2 \]

\[\cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}2\cos\frac{\alpha-\beta}2 \]

\[\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}2\sin\frac{\alpha-\beta}2 \]

杂题

\[\begin{align*} &\cos75°\notag\\ ={}&\cos(30°+45°)\notag\\ ={}&\cos30°\cos45°-\sin30°\sin45°\notag\\ ={}&\frac{\sqrt3}2\times\frac{\sqrt2}2-\frac12\times\frac{\sqrt2}2\notag\\ ={}&\frac{\sqrt6-\sqrt2}2 \end{align*} \]

\[\begin{align*} &\sin105°\notag\\ ={}&\sin(45°+60°)\notag\\ ={}&\sin45°\cos60°+\cos45°\sin60°\notag\\ ={}&\frac{\sqrt2}2\times\frac12+\frac{\sqrt2}2\times\frac{\sqrt3}2\notag\\ ={}&\frac{\sqrt6+\sqrt2}2 \end{align*} \]

\[\begin{align*} &\cos61°\cos16°+\sin61°\sin16°\notag\\ ={}&\cos(61°-16°)\notag\\ ={}&\cos45°\notag\\ ={}&\frac{\sqrt2}2 \end{align*} \]

\[\begin{align*} &\sin13°\cos17°+\cos13°\sin17°\notag\\ ={}&\sin(13°+17°)\notag\\ ={}&\sin30°\notag\\ ={}&\frac12 \end{align*} \]

\[\begin{align*} &\sin163°\sin223°+\sin253°\sin313°\notag\\ ={}&\sin163°\sin223°+\sin(163°+90°)\sin(223°+90°)\notag\\ ={}&\sin163°\sin223°+\cos163°\cos223°\notag\\ ={}&\cos(223°-163°)\notag\\ ={}&\cos(-60°)\notag\\ ={}&\cos60°\notag\\ ={}&\frac12 \end{align*} \]

\[\begin{align*} &\cos43°\cos77°+\sin43°\cos167°\notag\\ ={}&\cos43°\cos77°+\sin43°\cos(77°+90°)\notag\\ ={}&\cos43°\cos77°-\sin43°\sin77°\notag\\ ={}&\cos(43°+77°)\notag\\ ={}&\cos120°\notag\\ ={}&-\sin30°\notag\\ ={}&-\frac12\notag\\ \end{align*} \]

\[\begin{align*} &\frac{\sin7°+\cos15°\sin8°}{\cos7°-\sin15°\sin8°}\notag\\ ={}&\frac{\sin(15°-8°)+\cos15°\sin8°}{\cos(15°-8°)-\sin15°\sin8°}\notag\\ ={}&\frac{\sin15°\cos8°-\cos15°\sin8°+\cos15°\sin8°}{\cos15°\cos8°+\sin15°\sin8°-\sin15°\sin8°}\notag\\ ={}&\frac{\sin15°\cos8°}{\cos15°\cos8°}\notag\\ ={}&\tan15°\notag\\ ={}&\tan(45°-30°)\notag\\ ={}&\frac{\tan45°-\tan30°}{1+\tan45°\tan30°}\notag\\ ={}&\frac{1-\frac{\sqrt3}3}{1+1\times\frac{\sqrt3}3}\notag\\ ={}&2-\sqrt3\notag\\ \end{align*} \]

\[\begin{align*} &\frac{1+\tan75°}{1-\tan75°}\notag\\ ={}&\frac{\tan45°+\tan75°}{1-\tan45°\tan75°}\notag\\ ={}&\tan(45°+75°)\notag\\ ={}&\tan120°\notag\\ ={}&-\tan60°\notag\\ ={}&-\sqrt3\notag\\ \end{align*} \]

\[\begin{align*} &\frac{\cos15°-\sin15°}{\cos15°+\sin15°}\notag\\ ={}&\frac{1-\tan15°}{1+\sin15°}\notag\\ ={}&\frac{\tan45°-\tan15°}{1+\tan45°\tan15°}\notag\\ ={}&\tan30°\notag\\ ={}&\frac{\sqrt3}3 \end{align*} \]

\[\begin{align*} &\sin15°\cos15°\notag\\ ={}&\frac12\sin30°\notag\\ ={}&\frac12\times\frac12\notag\\ ={}&\frac14\notag\\ \end{align*} \]

\[\begin{align*} &1-2\sin^275°\notag\\ ={}&\cos(2\times75°)\notag\\ ={}&\cos150°\notag\\ ={}&-\cos60°\notag\\ ={}&-\frac12\notag\\ \end{align*} \]

\[\begin{align*} &1-2\sin^275°\notag\\ ={}&\cos(2\times75°)\notag\\ ={}&\cos150°\notag\\ ={}&-\cos60°\notag\\ ={}&-\frac12\notag\\ \end{align*} \]

\[\begin{align*} &1-2\sin^275°\notag\\ ={}&\cos(2\times75°)\notag\\ ={}&\cos150°\notag\\ ={}&-\cos60°\notag\\ ={}&-\frac12\notag\\ \end{align*} \]

\[\begin{align*} &\frac{2\tan150°}{1-\tan^2150°}\notag\\ ={}&\tan(2\times150°)\notag\\ ={}&\tan300°\notag\\ ={}&-\tan60°\notag\\ ={}&-\sqrt3\notag\\ \end{align*} \]

\[\begin{align*} &\tan15°+\cot15°\notag\\ ={}&\frac{\sin15°}{\cos15°}+\frac{\cos15°}{\sin15°}\notag\\ ={}&\frac{\sin^215°+\cos^215°}{\sin15°\cos15°}\notag\\ ={}&\frac1{\sin15°\cos15°}\notag\\ ={}&\frac1{\frac12\sin30°}\notag\\ ={}&\frac1{\frac12\times\frac12}\notag\\ ={}&4\notag\\ \end{align*} \]

\[\begin{align*} &\frac{2\cos10°-\sin20°}{\sin70°}\notag\\ ={}&\frac{2\cos(30°-20°)-\sin20°}{\cos20°}\notag\\ ={}&\frac{2(\cos30°\cos20°+\sin30°\sin20°)-\sin20°}{\cos20°}\notag\\ ={}&\frac{2(\frac{\sqrt3}2\times\cos20°+\frac12\times\sin20°)-\sin20°}{\sin20°}\notag\\ ={}&\frac{\sqrt3\cos20°+\sin20°-\sin20°}{\cos20°}\notag\\ ={}&\sqrt3\notag\\ \end{align*} \]

标签:cos,frac,三角函数,变形,beta,sin,notag,alpha,恒等
From: https://www.cnblogs.com/bxjz/p/tfid.html

相关文章