首页 > 其他分享 >AI | 强化学习 | Sarsa

AI | 强化学习 | Sarsa

时间:2022-12-30 14:58:06浏览次数:77  
标签:observation AI self RL state Sarsa action table 强化

AI | 强化学习 | Sarsa

首先感谢莫烦大佬的公开教程。
https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow

sarsa是强化学习中的一种,属于在线学习。【走到哪一步学哪一步】
和qlearning类似,但是qlearning属于离线学习。
image

这次实验是三个文件,一个是迷宫环境,一个是强化学习决策类,一个是运行更新的脚本。
image

RL_brain.py:

"""
This part of code is the Q learning brain, which is a brain of the agent.
All decisions are made in here.

View more on my tutorial page: https://morvanzhou.github.io/tutorials/
"""

import numpy as np
import pandas as pd

# 父类
class RL(object):
    def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        self.actions = action_space  # a list
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon = e_greedy

        self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)

    # 查看q表中有没有这个state,如果没有就添加上。
    def check_state_exist(self, state):
        if state not in self.q_table.index:
            # append new state to q table
            self.q_table = self.q_table.append(
                pd.Series(
                    [0]*len(self.actions),
                    index=self.q_table.columns,
                    name=state,
                )
            )

    # 选择决策
    # 90%最优解,10%随机采取行动
    def choose_action(self, observation):
        self.check_state_exist(observation)
        # action selection
        if np.random.rand() < self.epsilon:
            # choose best action
            state_action = self.q_table.loc[observation, :]
            # some actions may have the same value, randomly choose on in these actions
            action = np.random.choice(state_action[state_action == np.max(state_action)].index)
        else:
            # choose random action
            action = np.random.choice(self.actions)
        return action

    def learn(self, *args):
        pass


# off-policy
# Qlearning算法
class QLearningTable(RL):
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(QLearningTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

    def learn(self, s, a, r, s_):
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.loc[s_, :].max()  # next state is not terminal
        else:
            q_target = r  # next state is terminal
        self.q_table.loc[s, a] += self.lr * (q_target - q_predict)  # update


# on-policy
class SarsaTable(RL):

    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(SarsaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

    # 比Qlearning多了下一个action的参数
    def learn(self, s, a, r, s_, a_):
        self.check_state_exist(s_)    # 检查新的state有没有存在
        q_predict = self.q_table.loc[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.loc[s_, a_]  # next state is not terminal
        else:
            q_target = r  # next state is terminal
        # 更新q表
        self.q_table.loc[s, a] += self.lr * (q_target - q_predict)  # update


run_this.py:

"""
Sarsa is a online updating method for Reinforcement learning.

Unlike Q learning which is a offline updating method, Sarsa is updating while in the current trajectory.

You will see the sarsa is more coward when punishment is close because it cares about all behaviours,
while q learning is more brave because it only cares about maximum behaviour.
"""

from maze_env import Maze
from RL_brain import SarsaTable


def update():
    for episode in range(100):
        # initial observation
        observation = env.reset()

        # RL choose action based on observation
        action = RL.choose_action(str(observation))

        while True:
            # fresh env
            env.render()

            # RL take action and get next observation and reward
            observation_, reward, done = env.step(action)

            # RL choose action based on next observation
            action_ = RL.choose_action(str(observation_))

            # RL learn from this transition (s, a, r, s, a) ==> Sarsa
            RL.learn(str(observation), action, reward, str(observation_), action_)

            # swap observation and action
            observation = observation_
            action = action_

            # break while loop when end of this episode
            if done:
                break
        print(f'round: {episode}')
        print(RL.q_table)  # 输出查看q表

    # end of game
    print('game over')
    env.destroy()

if __name__ == "__main__":
    env = Maze()
    RL = SarsaTable(actions=list(range(env.n_actions)))

    env.after(100, update)
    env.mainloop()

标签:observation,AI,self,RL,state,Sarsa,action,table,强化
From: https://www.cnblogs.com/Mz1-rc/p/17014859.html

相关文章