首页 > 其他分享 >线性方程组的直接解法——Gauss消去法

线性方程组的直接解法——Gauss消去法

时间:2022-12-29 20:56:14浏览次数:47  
标签:Extended i1 线性方程组 矩阵 Gauss 消去法 mathrm

考虑线性方程组

\[\mathrm{A}x=\mathrm{b} \]

其中,\(\mathrm{A}=(a_{ij})_{n\times n}\),\(\mathrm{b}=[b_1,b_2,\cdots,b_n]^{\mathrm{T}}\)。在线性代数的课程中,我们已经学习过Gauss消元法,具体操作是将矩阵A转化为“阶梯型”矩阵。为方便起见,本文仅仅讨论系数矩阵非奇异的方程组,此时,目标是将矩阵A转化为上三角矩阵,再执行回代过程,即可给出方程组的解。本文将给出在计算机上的具体操作及实例代码。

一、基本Gauss消去法

我们仅仅讨论对矩阵第一列的操作,剩余的操作可以以此类推,因而不再赘述。
在执行Gauss消去法时,我们将第一列对角元以下的元素全部变为零。记第一列消元操作后的增广矩阵为\([\mathrm{A}^{(1)},\mathrm{b}^{(1)}]\),容易知道

\[[\mathrm{A}^{(1)},\mathrm{b}^{(1)}]= \begin{bmatrix} a_{11} & a_{22} & \cdots &a_{1n} & b_1 \\ 0 & a_{22}^{(1)} &\cdots &a_{2n}^{(1)} & b_2^{(1)}\\ \vdots &\vdots & & \vdots &\vdots\\ 0 & a_{n2}^{(1)} & &a_{nn}^{(1)} & b_n^{(1)} \end{bmatrix}\]

其中

\[a_{ij}^{(1)}=a_{ij}-\frac{a_{i1}}{a_{11}}a_{1j},j=2,\cdots ,n \]

\[a_{i1}^{(1)}=0 \]

\[b_i^{(1)}=b_i-\frac{a_{i1}}{a_{11}}b_1 \]

观察到重复出现的结构\(\frac{a_{_{i1}}}{a_{_{11}}}\),我们记它为\(l_{i1}\),称为消元因子,并将它存储在原来\(a_{i1}\)的位置。在计算的过程中,先计算消元因子并存储在相应位置,再执行后续的算法。
对于后续部分的运算,在第k步,只要对矩阵\(A^{(k-1)}(k:n,k:n)\)执行相同操作即可。

二、列主元Gauss消去法

在执行Gauss消元法的过程中,如果\(a_{kk}^{(k-1)}\)相对于其他元素绝对值较小,则会产生较大的舍入误差,影响计算精度,为此,我们引入了列主元Gauss消去法,基于交换矩阵的行不影响线性方程组的解。
记执行完k-1步消元后的增广矩阵为\([\mathrm{A}^{(k-1)},\mathrm{b}^{(k-1)}]\)。考虑第k列对角元及其以下的部分。选择绝对值最大的元所在行,与当前行执行行交换,再进行Gauss消元法。

三、计算实例

用列主元Gauss消去法解以下线性方程组:

\[\left\{ \begin{array}{} 0.5x_1+1.1x_2+3.1x_3=6,\\ 2x_1+4.5x_2+3.6x_3=0.02,\\ 5x_1+0.96x_2+6.5x_3=0.96. \end{array} \right.\]

#include <iostream>
#include <math.h>
using namespace std;

int main()
{
    double A_Extended[3][4]={0.5,1.1,3.1,6,2,4.5,3.6,0.02,5,0.96,6.5,0.96};
    double X_solution[3];
    for (int i=0;i<=2;i++)
    {
        int n=i;
        for (int p=i+1;p<=2;p++)
        {
            if (fabs(A_Extended[p][i])>fabs(A_Extended[n][i]))
            {
                n=p;
            }
        }

        for (int p=i;p<=2+1;p++)
        {
            double k=A_Extended[n][p];
            A_Extended[n][p]=A_Extended[i][p];
            A_Extended[i][p]=k;
        }

        for (int p=i+1;p<=2;p++)
        {
            A_Extended[p][i]=-A_Extended[p][i]/A_Extended[i][i];
            for (int pco=i+1;pco<=2+1;pco++)
            {
                A_Extended[p][pco]=A_Extended[p][pco]+A_Extended[p][i]*A_Extended[i][pco];
            }
        }
    }
    X_solution[2]=A_Extended[2][3]/A_Extended[2][2];
    for (int i=1;i>=0;i--)
    {
        double sum=0;
        for (int k=2;k>i;k--)
        {
            sum=sum+A_Extended[i][k]*X_solution[k];
        }
        X_solution[i]=(A_Extended[i][3]-sum)/A_Extended[i][i];
    }

    cout<<X_solution[0]<<" "<<X_solution[1]<<" "<<X_solution[2]<<endl;
    return 0; 
}

标签:Extended,i1,线性方程组,矩阵,Gauss,消去法,mathrm
From: https://www.cnblogs.com/wsk2333/p/17013337.html

相关文章