首页 > 其他分享 >cesaro sum和tauber型定理

cesaro sum和tauber型定理

时间:2022-12-28 17:55:25浏览次数:45  
标签:le frac sum tauber ge cesaro tilde bar

缓更

Definition.1: Given a sequence \(\{a_n\} (n \ge 1)\), the cesaro sum of a denote $\lim_{n \rightarrow \infty} \frac{\sum_{i = 1}^n a_i}{n} $,if this limit is convergent.
(Remark: I will also use \(\tilde{a}\) to denote the cesaro sum of a)

Lemma1:Suppose \(\{a_n\} (n \ge 1)\) is a sequence consisting of non-negative numbers, and forall \(z \in (0,1)\), \(\sum_{n \ge 1}a_n z^n\) is convergent.

prove that if \(\tilde{a}\) exists,\(\lim_{z \rightarrow 1^{-}} (1 - z) \sum_{n \ge 1} a_n z^n = \tilde{a}\)

proof:

Let \(f(z)\) denotes \(\sum_{n \ge 1} a_n z^n\)

so \((1 - z) f(z) = (1 - z)\sum_{n \ge 1} (a_n - \tilde{a}) z^n + \tilde{a}((1 - z)\sum_{n \ge 1}z^n )\)

\(= (1 - z) \sum_{n \ge 1}(a_n - \tilde{a}) z^n + \tilde{a}\)

Let \(b_n = a_n - \tilde{a}\)

It's easy to prove that \(\tilde{b} = 0\)

so we only need to prove that \(\lim_{z \rightarrow 1^{-}} (1 - z) \sum_{n \ge 1} b_n = 0\)

We make a adjustion step by step for the sequence b to complete this proof by mathmatical induction.

suppose the adjusted sequence is \(\bar{b}\)

for a Fixed N, suppose \(|\sum_{n = 1}^N b_n z^n| \le |\sum_{n = 1}^N \bar{b_n} z^n| \le sup_{n \ge 1} |\frac{\sum_{i = 1}^n b_i}{n}| \sum_{n = 1}^N z ^ n\).

then for (N + 1),we have that

(Assume that \(\sum_{n = 1}^{N + 1} b_n z^n\) > 0,since another condition is similar.)

  1. if \(b_{N + 1} \ge \frac{\sum_{n = 1}^{N+1}b_n}{N + 1}\)

\(\forall i\),if (\(\bar{b_i} < \frac{\sum_{n = 1}^{N+1}b_n}{N + 1}\)),we can reduce some value from \(b_{N + 1}\),while add it to \(\bar{b_i}\) until \(\bar{b_i} = \frac{\sum_{n = 1}^{N+1}b_n}{N + 1}\)

or \(b_{N + 1} = \frac{\sum_{n = 1}^{N+1}b_n}{N + 1}\)

let \(\bar{b}_{n + 1} = \frac{\sum_{n = 1}^{N+1}b_n}{N + 1}\)

since \(z^n\) is decending,so these adjustions will make sure that \(|\sum_{n = 1}^{N + 1} b_n z^n| \le |\sum_{n = 1}^{N + 1} \bar{b_n} z^n| \le sup_{n \ge 1} |\frac{\sum_{i = 1}^n b_i}{n}| \sum_{n = 1}^{N + 1} z ^ n\)

  1. if \(b_{N + 1} < \frac{\sum_{n = 1}^{N+1}b_n}{N + 1}\)
    do nothing,and let \(\bar{b}_{n + 1} = b_{n + 1} < \frac{\sum_{n = 1}^{N+1}b_n}{N + 1}\)

and then it's obvious that \(|\sum_{n = 1}^{N + 1} b_n z^n| \le |\sum_{n = 1}^{N + 1} \bar{b_n} z^n| \le sup_{n \ge 1} |\frac{\sum_{i = 1}^n b_i}{n}| \sum_{n = 1}^{N + 1} z ^ n\)

So \((1 - z) |\sum_{n \ge 1} b_{n} z^n| <= (1 - z)|\sum_{n = 1} ^ N b_{n} z^n| + (1 - z)sup_{n \ge N + 1} |\frac{\sum_{i = 1}^n b_i}{n}| \sum_{n = 1}^{N + 1} z ^ n\)

taking the limit \(z \rightarrow 1^{-}\),the first term will tend to 0.

and the second term is less or equal:
\(sup_{n \ge N + 1} |\frac{\sum_{i = 1}^n b_i}{n}|\)

since the N is arbitrary,and the cesaro sum of b is 0. so the second term will also tend to 0.

By now,we have completed this proof.

Q.E.D

一些感想:想试着用英语写,不过写着写着发现我的英语表达能力是灾难级的.接下来可能不得不放弃吧,哭死.

标签:le,frac,sum,tauber,ge,cesaro,tilde,bar
From: https://www.cnblogs.com/y-dove/p/17010902.html

相关文章

  • 404. Sum of Left Leaves
    Giventherootofabinarytree,returnthesumofallleftleaves.Aleafisanodewithnochildren.Aleftleafisaleafthatistheleftchildofanother......
  • Atcoder Beginner Contest ABC 283 Ex Popcount Sum 题解 (类欧几里得算法)
    题目链接令\(p=\lfloor\frac{n-r}m\rfloor\),则我们其实是要对所有\(0\lei\le29\)求\(\sum_{j=0}^p(\lfloor\frac{mj+r}{2^i}\rfloormod\2)\)。右边那个东西如果没......
  • Pytest插件pytest-assume多重断言
    Pytest插件pytest-assume多重断言背景importpytestdeftest_assume1():assert1==2print('hello')assert2==3if__name__=='__main__':......
  • Data & Cloud Summit 2021 活动小记
    前言        大家好,我是梦想家。前段时间我写了一篇文章,​​《参加七牛云“PISA”发布会随想录》​​,当时在评论区说到,如果点赞过15,7月30日将在上海浦东香格里拉......
  • AT_jag2018summer_day2_a 10^N+7 题解
    题目传送门题目大意有三个非负整数$x,y,z$,找到符合以下条件的最小非负整数\(n\);$n\{\rm\mod}\10^1+7\=\x$$n\{\rm\mod}\10^2+7\=\y$$n\{\rm\mo......
  • [LeetCode] 2389. Longest Subsequence With Limited Sum
    Youaregivenanintegerarray nums oflength n,andanintegerarray queries oflength m.Return anarray answer oflength m where answer[i] ist......
  • 解决“ ignoring dependency for device, assuming no driver”错误
    最近升级内核版本,需要把内核从4.14升级到4.19,控制台就是没有打印,通过strings__log_buf发现报错dw-apb-uartf8041000.serial1:ignoringdependencyfordevice,assum......
  • sumBy 数字运算符
    _=require('lodash');//varasync=require('async');//varasyncSave=require('asyncSave');varobjects=[{'n':4},{'n':2},{'n':8},{'n':6}]......
  • C++实现checksum校验和计算
    校验和概念差错控制编码是为了检查传输中的错误下面将一个报文的数据部分称为d,报文的冗余部分称为r发送方根据约定好的差错控制编码关系(关系指出dr之间的关系)和d生成出......
  • 机器学习基石---Why Can Machines Learn(Part6-Summary)
      这篇文章主要用自己的话对Week4-Week8的大体思路的一些总结,不涉及细节。  Part1-Part5主要阐述一个问题:learning在什么情况下是可行的?一个好的learning应该是在已知......