We have a rooted tree with $N$ vertices numbered $1,2,\dots,N$. There are $2^{k-1}$ ways to choose some of the vertices numbered between $1$ and $k$ so that Vertex $1$ is chosen. Let $S$ be a subset of the vertex set of a graph $G$. The subgraph $H$ induced by this vertex set $S$ is constructed as follows: A perfect binary tree is a rooted tree that satisfies all of the following conditions: Here, we regard a graph with \(1\) vertex and \(0\) edges as a perfect binary tree, too.Problem Statement
The tree is rooted at Vertex $1$, and the parent of Vertex $i \ge 2$ is Vertex $P_i(<i)$.
For each integer $k=1,2,\dots,N$, solve the following problem:
How many of them satisfy the following condition: the subgraph induced by the set of chosen vertices forms a perfect binary tree (with $2^d-1$ vertices for a positive integer $d$) rooted at Vertex $1$?
Since the count may be enormous, print the count modulo $998244353$.What is an induced subgraph?
What is a perfect binary tree?
Constraints
Input
Input is given from Standard Input in the following format:
$N$ $P_2$ $P_3$ $\dots$ $P_N$
Output
Print $N$ lines. The $i$-th ($1 \le i \le N$) line should contain the answer as an integer when $k=i$.
Sample Input 1
10 1 1 2 1 2 5 5 5 1
Sample Output 1
1 1 2 2 4 4 4 5 7 10
The following ways of choosing vertices should be counted:
- $\{1\}$ when $k \ge 1$
- $\{1,2,3\}$ when $k \ge 3$
- $\{1,2,5\},\{1,3,5\}$ when $k \ge 5$
- $\{1,2,4,5,6,7,8\}$ when $k \ge 8$
- $\{1,2,4,5,6,7,9\},\{1,2,4,5,6,8,9\}$ when $k \ge 9$
- $\{1,2,10\},\{1,3,10\},\{1,5,10\}$ when $k = 10$
Sample Input 2
1
Sample Output 2
1
If $N=1$, the $2$-nd line of the Input is empty.
Sample Input 3
10 1 2 3 4 5 6 7 8 9
Sample Output 3
1 1 1 1 1 1 1 1 1 1
Sample Input 4
13 1 1 1 2 2 2 3 3 3 4 4 4
Sample Output 4
1 1 2 4 4 4 4 4 7 13 13 19 31
先考虑如果不带实时询问怎么做?定义 \(dp_{i,j}\) 为以 \(i\) 为节点,深度为 \(j\) 的导出完全二叉树有多少个。发现 \(j\) 是 \(logn\) 级别的,因为一个 \(j\) 层完全二叉树的节点数量是 \(2^j\) 级别,而节点数量要 \(\le n\)。
用 \(son\) 表示 \(i\) 的所有儿子的集合, 初始化 \(dp_{i,0}=1\)$$dp_{i,j}=\sum\limits_{v1\in son}\sum\limits_{v2>v1,v2\in son}dp_{v1,j-1}\times dp_{v2,j-1}$$
这个可以化简为 $$(\sum\limits_{v\in son}dp_{v,j-1})^2-\sum\limits_{v\in son}dp_{v,j-1}^2$$
这个东西就可以实现树上 \(O(1)\) 转移了,最终答案为 \(\sum\limits_{j=0}^{logn}dp_{1,j}\),总复杂度 \(O(nlogn)\)
现在要求加点,询问。那么思路很简单,首先如果一个点的层数大过 \(logn\),他影响不到答案。然后考虑不断往上爬,去更改会改变的答案。
要直接维护 \(dp\) 值不容易,考虑维护所有 \(dp\) 值的和还有平方和,有这两个更改我们可以推出 \(dp\) 值的更改。然后发现,如果现在加入点 \(x\) 的时候,点 \(y\) 与点 \(x\) 的层数差为 \(a\),那么只有 \(dp_{y,a}\) 有可能更改,加上 \(x\) 的层数 \(\le logn\),所以这样子改的复杂度是 \(O(logn)\) 的。具体更改时就是减去旧的加上新的就行了。
#include<cstdio>
const int N=3e5+5,P=998244353,inv2=499122177;
typedef long long LL;
long long s[N][25],f[N][25],dp[N][25],ans,dep[N];//s表示和,f表示平方和
int n,k,fa[N];
void dfs(int x,int y,LL a,LL b)//a表示原来的,b表示新的
{
LL k=dp[x][y];
(s[x][y]+=b-a+P)%=P;
(f[x][y]+=b*b%P-a*a%P+P)%=P;
dp[x][y]=(s[x][y]*s[x][y]%P-f[x][y]+P)*inv2%P;
if(x-1)
dfs(fa[x],y+1,k,dp[x][y]);
}
int main()
{
scanf("%d",&n);
dp[1][0]=1;
puts("1");
for(int i=2;i<=n;i++)
{
scanf("%d",fa+i),dep[i]=dep[fa[i]]+1;
f[i][0]=dp[i][0]=s[i][0]=1;
if(dep[i]<=20)
dfs(fa[i],1,0,1);
// puts("qzmakioi");
ans=0;
for(int j=0;j<=20;j++)
(ans+=dp[1][j])%=P;
printf("%lld\n",ans);
}
}
标签:Perfect,Binary,le,when,tree,Sample,ge,ABC264Ex,dp
From: https://www.cnblogs.com/mekoszc/p/17001612.html