Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than
- The right subtree of a node contains only nodes with keys greater than
- Both the left and right subtrees must also be binary search trees.
Example 1:
2 / \ 1 3
Binary tree
[2,1,3]
, return true.
Example 2:
1 / \ 2 3
Binary tree [1,2,3]
, return false.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
if (root == NULL) return true;
long long pre = LLONG_MIN;///
bool valid = true;
dfs(root, pre,valid);
return valid;
}
private:
void dfs(TreeNode* root, long long& pre, bool& valid){
if (root->left)
dfs(root->left, pre,valid);
if (root->val <= pre){
valid = false;
return;
}
else
pre = root->val;
if (valid&&root->right)
dfs(root->right, pre,valid);
}
};
更简洁的方法
class Solution {
public:
bool isValidBST(TreeNode* root) {
TreeNode* prev = NULL;
return validate(root, prev);
}
bool validate(TreeNode* node, TreeNode* &prev) {
if (node == NULL) return true;
if (!validate(node->left, prev)) return false;
if (prev != NULL && prev->val >= node->val) return false;
prev = node;
return validate(node->right, prev);
}
};