首页 > 其他分享 >MNIST机器学习入门【学习笔记】

MNIST机器学习入门【学习笔记】

时间:2022-12-20 11:31:31浏览次数:38  
标签:入门 self labels 学习 train ._ images data MNIST

平台信息:
PC:ubuntu18.04、i5、anaconda2、cuda9.0、cudnn7.0.5、tensorflow1.10、GTX1060

作者:庄泽彬(欢迎转载,请注明作者)

说明:本文是在tensorflow社区的学习笔记,MNIST 手写数据入门demo

一、MNIST数据的下载,使用代码的方式:

input_data.py文件内容:

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False):
if fake_data:
self._num_examples = 10000
else:
assert images.shape[0] == labels.shape[0], (
"images.shape: %s labels.shape: %s" % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1.0 for _ in xrange(784)]
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
data_sets.train = DataSet([], [], fake_data=True)
data_sets.validation = DataSet([], [], fake_data=True)
data_sets.test = DataSet([], [], fake_data=True)
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels)
data_sets.validation = DataSet(validation_images, validation_labels)
data_sets.test = DataSet(test_images, test_labels)
return data_sets

新建test.py调用input_data.py进行下载手写识别的数据

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 11 23:10:15 2018

@author: zhuang
"""

import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

注意test.py与input_data.py要放在同一个目录下,运行test.py之后会在当前目录生成MNIST_data/  存放下载的数据,下载的内容如下图

MNIST机器学习入门【学习笔记】_d3

二、使用tensorflow构建模型进行训练

新建mnist-test.py内容如下:

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 12 11:43:37 2018

@author: zhuang
"""
import input_data
import tensorflow as tf

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

x = tf.placeholder("float",[None,784])

w = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x,w)+b)

# 计算交叉熵
y_ = tf.placeholder("float",[None,10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))

#梯度下降算法,以0.01的学习率更新参数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)

#训练模型1000次
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})

#评估模型
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))

print sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})

我们构建的模型手写识别的准确率在91%z左右

MNIST机器学习入门【学习笔记】_数据_02

 

觉得不错,就给我点小支持吧,蟹蟹

 



标签:入门,self,labels,学习,train,._,images,data,MNIST
From: https://blog.51cto.com/u_8475449/5954686

相关文章

  • ubuntu16.04安装tensorflow官方教程与机器学习资料【学习笔记】
    tensorflow官网有官方的安装教程:​​https://www.tensorflow.org/install/install_linux​​google的机器学习官方快速入门教程:​​https://developers.google.com/machin......
  • NOC入门
    NOC入门NOC应用背景https://blog.csdn.net/hulizhuzhenming/article/details/86579695介绍SOC总线架构的不足,引入NOCNoC的主题思想是将宏观网络的通讯措施应用于芯片上......
  • 【学习心得】学习SDRAM课程体会
    最近,有机会学习了明德扬SDRAM接口设计课程,将学习心得体会,用图文的形式简单地记录了下来。这个教程的学习让我受益匪浅,可以感受出来,明德扬老师是在认真做课程,点赞!......
  • 【CANN训练营第三季】昇腾AI入门课知识点整理和汇总
    【CANN训练营第三季】昇腾AI入门课知识点整理和汇总CANN提供的昇腾语言计算接口是:AscendCL。 昇腾目前支持以下AI深度学习框架:昇思MindSpore、TensorFlow、PytorchCANN包含......
  • 计算机科学导论-第三版-学习笔记-chapter1
    小测验的网站找不到,小程序也找不到,这两个部分的习题就不做了。CengageLearning-FoundationsofComputerScience这上面有部分答案。说是学习笔记,但大部分都是做题记......
  • 【机器学习】李宏毅——AE自编码器(Auto-encoder)
    1、What在自编码器中,有两个神经网络,分别为Encoder和Decoder,其任务分别是:Encoder:将读入的原始数据(图像、文字等)转换为一个向量Decoder:将上述的向量还原成原始数据的形式......
  • sql xml 入门
    /*sqlxml入门:--byjinjazz--http://blog.csdn.net/jinjazz1、xml:能认识元素、属性和值2、xpath:寻址语言,类似windows目录的查找......
  • 一天作息学习方法总结
    睡前静态冥想,降低脑活动。意念冥想,专注聚焦有意义&熟悉的事情,复习提升,摒除杂念。放空思想,控制自己放空思想。少量运动,适量小运动,产生乏力感。具象化杂念,解决掉,不再多......
  • 19号CSS学习
    一、CSS的复合选择器更高效的选择目标元素。后代选择器、子选择器、并集选择器、伪类选择器等。1.后代选择器可以选择父元素里的子元素。又称包含选择器。必须是......
  • Python 快速入门:学习Python的基础操作
    @目录变量赋值单变量赋值多变量赋值数据类型Number类型定义数字类型转换运算相关函数String类型定义字符串格式化多行字符串str.format()f-string相关函数List类型定义常用......