Show that any prime number other than 2 can be expressed as the difference of two squares, where each square is an integer squared.
Solution
任何质数都是奇数。考虑相邻数的平方差:
\[(x+1)^2-x^2=2x+1 \]所以这些差都是奇数,自然就包括所有的质数。
进一步,考虑两个数 \(a,b\):
\[p=a^2-b^2=(a+b)(a-b) \]很明显只有一个答案,因为素数 \(p\) 只有一种分解:\(p=1\times p\)
\[a-b=1, a+b=p \] 标签:59,质数,MathProblem,Two,primes,problem From: https://www.cnblogs.com/xinyu04/p/16637203.html