首页 > 其他分享 >离线计算(Batch批处理)

离线计算(Batch批处理)

时间:2022-12-14 12:34:27浏览次数:73  
标签:映射 批处理 离线 Hadoop Batch 键值 阶段 重排 输入

  • 基础:google的三大论文——论文GFS、MapReduce、BigTable(kv存储)
    • 基于上述论文,开发了产品Hadoop:包含存储(HDFS)+计算(mapreduce)两部分
  • HDFS架构
  • MapReduce计算
    • https://www.yiibai.com/hadoop/intro-mapreduce.html
    • 介绍:一种分布式的计算方式指定一个Map(映#x5C04;)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组
    • 输入:

      Welcome to Hadoop Class

      Hadoop is good

      Hadoop is bad

    • 步骤:
      • 输入拆分:input splits

        输入到MapReduce工作被划分成固定大小的块叫做 input splits ,输入折分是由单个映射消费输入块。

        映射 - Mapping

        这是在 map-reduce 程序执行的第一个阶段。在这个阶段中的每个分割的数据被传递给映射函数来产生输出值。在我们的例子中,映射阶段的任务是计算输入分割出现每个单词的数量(更多详细信息有关输入分割在下面给出)并编制以某一形式列表<单词,出现频率>

        重排 - Shuffling

        这个阶段消耗映射阶段的输出。它的任务是合并映射阶段输出的相关记录。在我们的例子,同样的词汇以及它们各自出现频率。

        Reducing

        在这一阶段,从重排阶段输出值汇总。这个阶段结合来自重排阶段值,并返回一个输出值。总之,这一阶段汇总了完整的数据集。

        在我们的例子中,这个阶段汇总来自重排阶段的值,计算每个单词出现次数的总和。

    •  

标签:映射,批处理,离线,Hadoop,Batch,键值,阶段,重排,输入
From: https://www.cnblogs.com/wxdlut/p/16981731.html

相关文章