应用背景介绍
早在遥远的1989年,一家叫做ALVIVN的公司首次将神经网络用在汽车上,进行车道线检测和地面分割。时至今日,深度学习已经应用在自动驾驶系统的多个分支领域。首先是感知领域,常用的传感器有相机、激光雷达和毫米波雷达。深度学习利用二维图像或三维点云作为输入,对其中的障碍物进行检测、识别、分割、跟踪和测距。
Mask RCNN
M3DSSD: Monocular 3D Single Stage Object Detector
PointPillars: Fast Encoders for Object Detection from Point Clouds
其次是定位领域,自动驾驶通常需要厘米级的定位精度,这就使得传统高精地图在许多场景下不十分可靠。近年来一些方法使用在线地图学习,基于车载传感器观测,动态地构建高清地图,是一种比传统的预标注高清地图更可扩展的方式,为自动驾驶车辆提供语义和几何先验。
HDMapNet: An Online HD Map Construction and Evaluation Framework
再次是预测规划,使用深度学习方法可以更好的预测障碍物的轨迹,甚至有的方法把感知-预测结合来解决问题。
PnPNet: End-to-End Perception and Prediction with Tracking in the Loop
正因为深度学习算法在自动驾驶中的广泛应用,使得模型部署工程师炙手可热,大多数公司既要求算法工程师设计算法,又要部署移植,同时具备两项技能的人才一直是自动驾驶公司优先录取的对象,对应的薪资也是非常可观。