首页 > 其他分享 >双线性到底是个什么玩意

双线性到底是个什么玩意

时间:2022-12-10 15:24:08浏览次数:63  
标签:features 到底 self in1 bias 双线性 玩意 math out

最近被双线性搞迷糊了,看pytorch源码和数学感觉有点迷糊,所以在这里记录一下探究的结果。

目录

Pytorch源码

class Bilinear(Module):
    r"""Applies a bilinear transformation to the incoming data:
    :math:`y = x_1^T A x_2 + b`

    Args:
        in1_features: size of each first input sample
        in2_features: size of each second input sample
        out_features: size of each output sample
        bias: If set to False, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and
          :math:`*` means any number of additional dimensions. All but the last dimension
          of the inputs should be the same.
        - Input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`.
        - Output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}`
          and all but the last dimension are the same shape as the input.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.
            The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in1\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
                :math:`k = \frac{1}{\text{in1\_features}}`

    Examples::

        >>> m = nn.Bilinear(20, 30, 40)
        >>> input1 = torch.randn(128, 20)
        >>> input2 = torch.randn(128, 30)
        >>> output = m(input1, input2)
        >>> print(output.size())
        torch.Size([128, 40])
    """
    __constants__ = ['in1_features', 'in2_features', 'out_features']
    in1_features: int
    in2_features: int
    out_features: int
    weight: Tensor

    def __init__(self, in1_features: int, in2_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(Bilinear, self).__init__()
        self.in1_features = in1_features
        self.in2_features = in2_features
        self.out_features = out_features
        self.weight = Parameter(torch.empty((out_features, in1_features, in2_features), **factory_kwargs))

        if bias:
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self) -> None:
        bound = 1 / math.sqrt(self.weight.size(1))
        init.uniform_(self.weight, -bound, bound)
        if self.bias is not None:
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
        return F.bilinear(input1, input2, self.weight, self.bias)

    def extra_repr(self) -> str:
        return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format(
            self.in1_features, self.in2_features, self.out_features, self.bias is not None
        )

这里虽然说了\(x_1\) 要转置,但是没说怎么转置,而且如果直接实验的话,会发现按照数学公式进行两次乘法是会报错的,
所以我们从forward入手,看看torch.nn.functional.bilinear的定义:

def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor:
    r"""
    Applies a bilinear transformation to the incoming data:
    :math:`y = x_1^T A x_2 + b`

    Shape:

        - input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}`
          and :math:`*` means any number of additional dimensions.
          All but the last dimension of the inputs should be the same.
        - input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`
        - weight: :math:`(\text{out\_features}, \text{in1\_features},
          \text{in2\_features})`
        - bias: :math:`(\text{out\_features})`
        - output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}`
          and all but the last dimension are the same shape as the input.
    """
    if has_torch_function_variadic(input1, input2, weight):
        return handle_torch_function(
            bilinear,
            (input1, input2, weight),
            input1, input2, weight,
            bias=bias
        )
    return torch.bilinear(input1, input2, weight, bias)

这里其实没有matmul的操作,后续也难以追踪了,而且官方文档写的不是特别清楚。所以这里我们来做做实验。

实验

输入为二维

1

输入为三维

2

输入为四维

通过实验可以确定:

  • bilinear的实现应该不是直接使用matmul,猜测应该是weight有broadcast之后才能正常计算乘法
  • 只要前面有不一样的维度就会报错,除了最后一维,必须全部一致才行

标签:features,到底,self,in1,bias,双线性,玩意,math,out
From: https://www.cnblogs.com/slowlai/p/16971552.html

相关文章