1. x_train:包括所有自变量,这些变量将用于训练模型,同样,我们已经指定测试_size=0.4,这意味着来自完整数据的60%的观察值将用于训练/拟合模型,其余40%将用于测试模型。
2. y_train-这是因变量,需要此模型进行预测,其中包括针对自变量的类别标签,我们需要在训练/拟合模型时指定我们的因变量
3. x_test:这是数据中剩余的40%的自变量部分,这些自变量将不会在训练阶段使用,并将用于进行预测,以测试模型的准确性。
4. y_test-此数据具有测试数据的类别标签,这些标签将用于测试实际类别和预测类别之间的准确性。
————————————————
版权声明:本文为CSDN博主「爱吃西瓜的夏天516」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/lichunxia516/article/details/107707336