以下只是对此问题的一个代码实现,具体理论部分请参见王晓东《算法设计与分析》第2版3.1节 矩阵连乘问题。
#include <iostream>
#include <iomanip>
using namespace std;
#define MAX_COUNT 20
//矩阵属性
struct tagMatrixAttribute
{
int row;
int col;
};
//矩阵连乘加括号求解
void MatrixChain( tagMatrixAttribute mMatrix[], int nCount,
int m[][MAX_COUNT], int s[][MAX_COUNT] )
{
for ( int i = 0; i < nCount; ++i ) m[i][i] = 0;
for ( int r = 1; r < nCount; ++r )
{
for ( int i = 0; i < nCount - r; ++i )
{
int j = i + r;
//从k处断开,i <= k < j
int k = i;
m[i][j] = m[i][k] + m[k+1][j]
+ mMatrix[i].row * mMatrix[k].col * mMatrix[j].col;
s[i][j] = k;
int nTemp = 0;
for( k = i + 1; k < j; ++k )
{
nTemp = m[i][k] + m[k+1][j]
+ mMatrix[i].row * mMatrix[k].col * mMatrix[j].col;
if ( nTemp < m[i][j] )
{
m[i][j] = nTemp;
s[i][j] = k;
}
}
}
}
}
//构造结果
void TraceBack( int s[][MAX_COUNT], int i, int j )
{
if ( i == j )
{
cout << "A" << i+1;
return;
}
cout << "(";
TraceBack( s, i, s[i][j] );
TraceBack( s, s[i][j]+1, j );
cout << ")";
}
void PrintArray( int nArray[][MAX_COUNT], int nCount )
{
cout << left;
for( int i = 0; i < nCount; ++i )
{
for ( int j = 0; j < nCount; ++j )
{
cout << setw(7) << nArray[i][j] << " ";
}
cout << endl;
}
cout << right;
}
int main()
{
tagMatrixAttribute mMatrixAttrArray[] = {
30, 35,
35, 15,
15, 5,
5, 10,
10, 20,
20, 25
};
// tagMatrixAttribute mMatrixAttrArray[] = {
// 10, 100,
// 100, 5,
// 5, 50
// };
int nCount = _countof( mMatrixAttrArray );
int m[MAX_COUNT][MAX_COUNT];
int s[MAX_COUNT][MAX_COUNT];
memset( m, 0, sizeof(m) );
memset( s, 0, sizeof(s) );
MatrixChain( mMatrixAttrArray, nCount, m, s );
PrintArray( m, nCount );
cout << endl;
PrintArray( s, nCount );
cout << endl;
//构造结果
TraceBack( s, 0, nCount-1 );
cout << endl;
return 0;
}
作者:山丘儿