首页 > 其他分享 >Pytorch线性回归测试

Pytorch线性回归测试

时间:2022-12-05 12:07:05浏览次数:38  
标签:linear numpy self torch Pytorch 测试 线性 model data


Pytorch开发环境搭建清参考这篇文章

import torch 
import matplotlib.pyplot as plt

def create_linear_data(nums_data, if_plot= False):
"""
Create data for linear model
Args:
nums_data: how many data points that wanted
Returns:
x with shape (nums_data, 1)
"""
x = torch.linspace(0,1,nums_data)
x = torch.unsqueeze(x,dim=1)
k = 2
y = k * x + torch.rand(x.size())

if if_plot:
plt.scatter(x.numpy(),y.numpy(),c=x.numpy())
plt.show()
data = {"x":x, "y":y}
return data

data = create_linear_data(300, if_plot=True)
print(data["x"].size())


class LinearRegression(torch.nn.Module):
"""
Linear Regressoin Module, the input features and output
features are defaults both 1
"""
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(1,1)

def forward(self,x):
out = self.linear(x)
return out
linear = LinearRegression()
print(linear)

class Linear_Model():
def __init__(self):
"""
Initialize the Linear Model
"""
self.learning_rate = 0.001
self.epoches = 10000
self.loss_function = torch.nn.MSELoss()
self.create_model()
def create_model(self):
self.model = LinearRegression()
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate)

def train(self, data, model_save_path="model.pth"):
"""
Train the model and save the parameters
Args:
model_save_path: saved name of model
data: (x, y) = data, and y = kx + b
Returns:
None
"""
x = data["x"]
y = data["y"]
for epoch in range(self.epoches):
prediction = self.model(x)
loss = self.loss_function(prediction, y)

self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

if epoch % 500 == 0:
print("epoch: {}, loss is: {}".format(epoch, loss.item()))
torch.save(self.model.state_dict(), "linear.pth")


def test(self, x, model_path="linear.pth"):
"""
Reload and test the model, plot the prediction
Args:
model_path: the model's path and name
data: (x, y) = data, and y = kx + b
Returns:
None
"""
x = data["x"]
y = data["y"]
self.model.load_state_dict(torch.load(model_path))
prediction = self.model(x)

plt.scatter(x.numpy(), y.numpy(), c=x.numpy())
plt.plot(x.numpy(), prediction.detach().numpy(), color="r")
plt.show()
def compare_epoches(self, data):
x = data["x"]
y = data["y"]

num_pictures = 16
fig = plt.figure(figsize=(10,10))
current_fig = 0
for epoch in range(self.epoches):
prediction = self.model(x)
loss = self.loss_function(prediction, y)

self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

if epoch % (self.epoches/num_pictures) == 0:
current_fig += 1
plt.subplot(4, 4, current_fig)
plt.scatter(x.numpy(), y.numpy(), c=x.numpy())
plt.plot(x.numpy(), prediction.detach().numpy(), color="r")
plt.show()

linear = Linear_Model()
data = create_linear_data(100)
linear.train(data)
linear.test(data)
linear.compare_epoches(data)

执行:

Pytorch线性回归测试_人工智能

Pytorch线性回归测试_Cuda_02

Pytorch线性回归测试_pytorch_03

Pytorch线性回归测试_Cuda_04

 结束!

标签:linear,numpy,self,torch,Pytorch,测试,线性,model,data
From: https://blog.51cto.com/u_15899439/5911825

相关文章