1.lr_scheduler.StepLR
class torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
功能: 等间隔调整学习率,调整倍数为gamma倍,调整间隔为step_size。间隔单位是step。需要注意的是,step通常是指epoch,不要弄成iteration了。
参数:
step_size(int)- 学习率下降间隔数,若为30,则会在30、60、90......个step时,将学习率调整为lr*gamma。
gamma(float)- 学习率调整倍数,默认为0.1倍,即下降10倍。
last_epoch(int)- 上一个epoch数,这个变量用来指示学习率是否需要调整。当last_epoch符合设定的间隔时,就会对学习率进行调整。当为-1时,学习率设置为初始值。
这个是在用mmclassification时用到的,其他的详看这个链接:https://zhuanlan.zhihu.com/p/69411064
标签:间隔,step,epoch,学习,pytorch,方法,gamma,调整 From: https://www.cnblogs.com/h694879357/p/16951825.html