首页 > 其他分享 >[ABC280G] Do Use Hexagon Grid 2

[ABC280G] Do Use Hexagon Grid 2

时间:2022-12-05 11:02:51浏览次数:47  
标签:y2 Do Use x1 leq cells x2 y1 Hexagon

Problem Statement

A hexagonal cell is represented as $(i,j)$ with two integers $i$ and $j$.
Cell $(i,j)$ is adjacent to the following six cells:

  • $(i-1,j-1)$
  • $(i-1,j)$
  • $(i,j-1)$
  • $(i,j+1)$
  • $(i+1,j)$
  • $(i+1,j+1)$

Let us define the distance between two cells $X$ and $Y$ by the minimum number of moves required to travel from cell $X$ to cell $Y$ by repeatedly moving to an adjacent cell.
For example, the distance between cells $(0,0)$ and $(1,1)$ is $1$, and the distance between cells $(2,1)$ and $(-1,-1)$ is $3$.

You are given $N$ cells $(X_1,Y_1),\ldots,(X_N,Y_N)$.
How many ways are there to choose one or more from these $N$ cells so that the distance between any two of the chosen cells is at most $D$?
Find the count modulo $998244353$.

Constraints

  • $1 \leq N \leq 300$
  • $-10^9\leq X_i,Y_i \leq 10^9$
  • $1\leq D \leq 10^{10}$
  • $(X_i,Y_i)$ are pairwise distinct.
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$ $D$
$X_1$ $Y_1$
$\vdots$
$X_N$ $Y_N$

Output

Print the answer.


Sample Input 1

3 1
0 0
0 1
1 0

Sample Output 1

5

There are five possible sets of the chosen cells: $\{(0,0)\},\{(0,1)\},\{(1,0)\},\{(0,0),(0,1)\}$, and $\{(0,0),(1,0)\}$.


Sample Input 2

9 1
0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

Sample Output 2

33

Sample Input 3

5 10000000000
314159265 358979323
846264338 -327950288
-419716939 937510582
-97494459 -230781640
628620899 862803482
先考虑怎样算出最短路。如果 $x1< x2,y1< y2$ 时,从 $(x1,y1)$ 到 $(x2,y2)$的方案是先不停的走 $(x+1,y+1)$,使得 $x1=x2$ 或者 $y1=y2$,然后再慢慢走。所以最短路长度为 $\max(x2-x1,y2-y1)$。 $x1>x2,y1>y2$ 时同理,最短路长度不妨写成 $\max(|x2-x1|,|y2-y1|)$

反之,如果 \(x1<x2,y1>y2\),并不能走 \((x+1,y-1)\),所以只能一步一步走。最短路长度为 \(x2-x1+y1-y2\),最短路为 \(x1>x2,y1<y2\) 时同理,最短路长度为 \(|x2-x1+y1-y2|\)。

两个结论想办法整合一下,设 \(a=\max(|x2-x1|,|y2-y1|)\),\(b=|x1-y1+x2-y2|\)。会发现非常的巧,如果 \(x1<x2,y1<y2\) 时,\(a>b\)。如果 \(x1<x2,y1>y2\) 时, \(a<b\)。反过来同理,所以其实两个点 \((x1,y1)\) 和 \((x2,y2)\) 的距离为 \(\max(|x2-x1|,|y2-y1|,|(x1-y1)+(x2-y2)|)\)

然后就非常套路了。枚举 \(x\),\(y\),\(x-y\) 的最小值(枚举的是点),并钦定这些点必选。然后看有多少个点在他们围出来的范围内。如果在的话,统计。设有 \(cnt\) 个,那么答案会增加 \(2^cnt\) 个。这样的方案,由于他们的最小值是不同的,所以不会重复统计。不过注意要把 \(x\) 相同的, \(y\) 相同的, \(x-y\)相同的强行钦定一个顺序。可以使用离散化处理。

但是如果枚举完暴力去找所有在范围中的数,复杂度 \(O(n^4)\)。但我们可以使用双指针加入和删除去统计就好了。

#include<bits/stdc++.h>
using namespace std;
const int N=305,P=998244353;
int n,ans,pw[N],lshx[N],lshy[N],fx[N],fy[N];
long long d;
struct node{
	int x,y;
	bool operator<(const node&n)const{
		return lshx[x]-lshy[y]<lshx[n.x]-lshy[n.y];
	}
}t[N];
int can(int u,int x,int y) 
{
	return t[u].x>=t[x].x&&lshx[t[u].x]<=lshx[t[x].x]+d&&t[u].y>=t[y].y&&lshy[t[u].y]<=lshy[t[y].y]+d;
}
int main()
{
	scanf("%d%lld",&n,&d);
	for(int i=pw[0]=1;i<=n;i++)
		pw[i]=pw[i-1]*2%P;
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d",&t[i].x,&t[i].y);
		lshx[i]=t[i].x,lshy[i]=t[i].y;
	}
	sort(lshx+1,lshx+n+1);
	sort(lshy+1,lshy+n+1);
	for(int i=1;i<=n;i++)
	{
		t[i].x=lower_bound(lshx+1,lshx+n+1,t[i].x)-lshx;
		fx[t[i].x]++,t[i].x+=fx[t[i].x]-1;
		t[i].y=lower_bound(lshy+1,lshy+n+1,t[i].y)-lshy;
		fy[t[i].y]++,t[i].y+=fy[t[i].y]-1;
	}
	sort(t+1,t+n+1);
//	for(int i=1;i<=n;i++)
//		printf("%d %d\n",t[i].x,t[i].y);
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(!can(j,i,j)||!can(i,i,j))
				continue;
			int r=0,s=0;
			for(int k=1;k<=n;k++)
			{
				if(!can(k,i,j))
					continue;
				int z=lshx[t[k].x]-lshy[t[k].y];
				while(r<n)
				{
					if(!can(r+1,i,j)) 
						++r;
					else if(lshx[t[r+1].x]-lshy[t[r+1].y]<=z+d)
						++r,++s;
					else
						break;
				}
				if(k<=i&&k<=j&&z+d>=lshx[t[i].x]-lshy[t[i].y]&&z+d>=lshx[t[j].x]-lshy[t[j].y])
				{
					int t=s;
					if(i==j&&j==k)
						t--;
					else if(i==j||j==k||i==k)
						t-=2;
					else
						t-=3;
					(ans+=pw[t])%=P;
//					printf("%d %d %d %d %d\n",i,j,k,ans,t);
				}
				--s;
			}
		}
	}
	printf("%d",ans) ;
}

标签:y2,Do,Use,x1,leq,cells,x2,y1,Hexagon
From: https://www.cnblogs.com/mekoszc/p/16951741.html

相关文章