首页 > 其他分享 >实验五:全连接神经网络手写数字识别实验

实验五:全连接神经网络手写数字识别实验

时间:2022-11-28 21:37:27浏览次数:49  
标签:plt torch loader 神经网络 train 实验 test 手写 data

【实验目的】

理解神经网络原理,掌握神经网络前向推理和后向传播方法;

掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。

【实验内容】

1.使用pytorch框架,设计一个全连接神经网络,实现Mnist手写数字字符集的训练与识别。

 

【实验报告要求】

修改神经网络结构,改变层数观察层数对训练和检测时间,准确度等参数的影响;
修改神经网络的学习率,观察对训练和检测效果的影响;
修改神经网络结构,增强或减少神经元的数量,观察对训练的检测效果的影响。

import torch
import torchvision
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
 
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)
 
train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_test, shuffle=True)
 
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
# print(example_targets)
# print(example_data.shape)
 
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()
 
 
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
 
    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
 
network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)
 
train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]
 
 
def train(epoch):
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data),
                                                                           len(train_loader.dataset),
                                                                           100. * batch_idx / len(train_loader),
                                                                           loss.item()))
            train_losses.append(loss.item())
            train_counter.append((batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')
 
def test():
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))
 
 
train(1)
 
test()  # 不加这个,后面画图就会报错:x and y must be the same size
for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()
 
 
fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
 
 
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
with torch.no_grad():
    output = network(example_data)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Prediction: {}".format(output.data.max(1, keepdim=True)[1][i].item()))
    plt.xticks([])
    plt.yticks([])
plt.show()
 
 
# ----------------------------------------------------------- #
 
continued_network = Net()
continued_optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)
 
network_state_dict = torch.load('model.pth')
continued_network.load_state_dict(network_state_dict)
optimizer_state_dict = torch.load('optimizer.pth')
continued_optimizer.load_state_dict(optimizer_state_dict)
 
# 注意不要注释前面的“for epoch in range(1, n_epochs + 1):”部分,
# 不然报错:x and y must be the same size
# 为什么是“4”开始呢,因为n_epochs=3,上面用了[1, n_epochs + 1)
for i in range(4, 9):
    test_counter.append(i*len(train_loader.dataset))
    train(i)
    test()
 
fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
plt.show()

 

标签:plt,torch,loader,神经网络,train,实验,test,手写,data
From: https://www.cnblogs.com/xiaogaoa/p/16933664.html

相关文章

  • PTA 21级数据结构与算法实验8—排序
    目录7-1统计工龄7-2寻找大富翁7-3点赞狂魔7-4插入排序还是归并排序7-5插入排序还是堆排序7-6逆序对7-7堆排序7-8石子合并7-9第k小7-10快速排序的过程7-1统计工......
  • 实验五:全连接神经网络手写数字识别实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】使用pytorch框架,设......
  • 实验五:全连接神经网络手写数字识别实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】1.使用pytorch框架,......
  • 实验五 继承和多态
    pets.hpp源码#include<iostream>#include<string.h>usingnamespacestd;classMachinePets{private:stringnickname;public:MachinePets(co......
  • 实验4
    1 2 3 45 6 7  ......
  • 全连接神经网络手写数字识别实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】1.使用pytorch框架,......
  • Linux实验2:CENTOS7下的用户管理和权限设置
    一、实验目的掌握创建用户和用户组的方法;掌握文件的权限设置方法。二、实验任务1.新增加一个组名为student,密码为123。2.新增加一个用户名为zhouxingchi,其附属组......
  • k8s 基于hpa弹性伸缩实验
    HPA基本原理 kubectlscale 命令可以来实现Pod的扩缩容功能,但是这个毕竟是完全手动操作的,要应对线上的各种复杂情况,我们需要能够做到自动化去感知业务,来自动进行扩缩......
  • 实验五:全连接神经网络手写数字识别实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】1.使用pytorch框架,......
  • 实验五:全连接神经网络手写数字识别实验v
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】1.使用pytorch框架,......