首页 > 其他分享 >全连接神经网络手写数字识别实验

全连接神经网络手写数字识别实验

时间:2022-11-28 18:12:20浏览次数:40  
标签:nn self torch 神经网络 train import 手写 识别 size

【实验目的】

理解神经网络原理,掌握神经网络前向推理和后向传播方法;

掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。

【实验内容】

1.使用pytorch框架,设计一个全连接神经网络,实现Mnist手写数字字符集的训练与识别。

 

【实验报告要求】

修改神经网络结构,改变层数观察层数对训练和检测时间,准确度等参数的影响;
修改神经网络的学习率,观察对训练和检测效果的影响;
修改神经网络结构,增强或减少神经元的数量,观察对训练的检测效果的影响。

 

import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import torchvision
import numpy as np
import torch.optim as optim
from torch.utils.data import Dataset    
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import os

train_transform = transforms.Compose([
                                transforms.RandomAffine(degrees = 0,translate=(0.1, 0.1)),
                                transforms.RandomRotation((-10,10)),     
                                transforms.ToTensor(),
                                transforms.Normalize((0.1307,),(0.3081,))])
test_transform = transforms.Compose([transforms.ToTensor(),
                                    transforms.Normalize((0.1307,),(0.3081,))])

train_batch_size = 256
learning_rate = 0.006
test_batch_size = 100
random_seed = 2    
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) 

train_dataset = datasets.FashionMNIST(
    root='../datasets', train=True, transform=transforms.ToTensor(), download=False)

test_dataset = datasets.FashionMNIST(
    root='../datasets', train=False, transform=transforms.ToTensor(),download=False)

train_loader = DataLoader(dataset=train_dataset,batch_size=train_batch_size,shuffle=True,pin_memory=True)
test_loader = DataLoader(dataset=test_dataset,batch_size=test_batch_size,shuffle=False,pin_memory=True)
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
  
        self.conv1 = nn.Conv2d(1  ,32, kernel_size=5,padding=2)
        self.conv2 = nn.Conv2d(32 ,64, kernel_size=5,padding=2)
        self.conv3 = nn.Conv2d(64 ,128,kernel_size=5,padding=2)
        self.conv4 = nn.Conv2d(128,192,kernel_size=5,padding=2)

  
        self.rblock1 = ResidualBlock(32)
        self.rblock2 = ResidualBlock(64)
        self.rblock3 = ResidualBlock(128)
        self.rblock4 = ResidualBlock(192)

        
        self.bn1 = nn.BatchNorm2d(32)
        self.bn2 = nn.BatchNorm2d(64)
        self.bn3 = nn.BatchNorm2d(128)
        self.bn4 = nn.BatchNorm2d(192)

 
        self.mp = nn.MaxPool2d(2)


        self.fc1 = nn.Linear(192*7*7, 256) 
        self.fc6 = nn.Linear(256, 10)  

    def forward(self, x):
        in_size = x.size(0)

        x = self.conv1(x)   
        x = self.bn1(x)
        x = F.relu(x)
        x = self.rblock1(x)

        x = self.conv2(x)   
        x = F.relu(x)
        x = self.bn2(x)
        x = self.rblock2(x)

        x = self.mp(x)     


        x = self.conv3(x)   
        x = self.bn3(x)
        x = F.relu(x)
        x = self.rblock3(x)

        x = self.conv4(x)   
        x = self.bn4(x)
        x = F.relu(x)
        x = self.rblock4(x)

        x = self.mp(x)     

        x = x.view(in_size, -1)    
        x = F.relu(self.fc1(x))  

        return self.fc6(x)


os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
torch.backends.cudnn.benchmark = True      
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

torch.cuda.empty_cache()       

model.to(device)


criterion = torch.nn.CrossEntropyLoss() 

optimizer = optim.SGD(model.parameters(),lr=learning_rate,momentum=0.5)   

scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=2, verbose=True, threshold=0.00005, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
def train(epoch):
    running_loss =0.0
    for batch_idx,data in enumerate(train_loader,0):
        inputs,target = data
        inputs,target = inputs.to(device),target.to(device)
        optimizer.zero_grad()

       
        outputs = model(inputs)
        loss = criterion(outputs,target)
        loss.backward()
        optimizer.step()

        running_loss+=loss.item()
        if batch_idx%300==299:
            train_loss_val.append((running_loss/300))
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images,labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            predicted = torch.max(outputs.data,dim=1)       
            total += labels.size(0)
            correct += (predicted==labels).sum().item()
    print('Accuracy on test set: %f %% [%d/%d]' % (100 * correct / total, correct, total))

    return correct/total
train_epoch = []
model_accuracy = []
temp_acc = 0.0
train_loss_val = []
for epoch in range(30):
    train(epoch)
    acc = test()

    print(epoch + 1,acc)
    train_epoch.append(epoch)
    model_accuracy.append(acc)
    scheduler.step(acc)

plt.figure(1)
plt.plot(train_epoch, model_accuracy)
plt.grid(linestyle=':')
plt.ylabel('accuracy') 
plt.xlabel('epoch') 
plt.show()

运行结果:

标签:nn,self,torch,神经网络,train,import,手写,识别,size
From: https://www.cnblogs.com/yemenwudi/p/16932123.html

相关文章

  • 实验五:全连接神经网络手写数字识别实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】1.使用pytorch框架,......
  • 实验五:全连接神经网络手写数字识别实验v
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】1.使用pytorch框架,......
  • B-神经网络模型复杂度分析
    前言一,模型计算量分析卷积层FLOPs计算全连接层的FLOPs计算二,模型参数量分析卷积层参数量BN层参数量全连接层参数量三,模型内存访问代价计算卷积层MA......
  • 神经网络反向传播
    【题目】1.下图为三层神经网络结构,表中为输入的4条样本数据,计算第2个训练样本的前向传播过程,网络参数的初始为:W1W1=[[0.1,0.2],[0.2,0.3]],theta1=[0.3,0.3],W2W2=[[0.4,......
  • 实验五:全神经网络手写数字识别实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】1.使用pytorch框架......
  • PGL图学习之图神经网络ERNIESage、UniMP进阶模型[系列八]
    PGL图学习之图神经网络ERNIESage、UniMP进阶模型[系列八]原项目链接:fork一下即可:https://aistudio.baidu.com/aistudio/projectdetail/5096910?contributionType=1相关项......
  • RNN循环神经网络根据不同国家特点和首字母生成名字name
    数据地址:https://download.pytorch.org/tutorial/data.zip1"""2@File:HomeWork6_RNN_names.py3@Author:silvan4@Time:2022/11/2810:565......
  • 实验五:全连接神经网络手写数字识别实验
    实验五:全连接神经网络手写数字识别实验 【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程......
  • 实验五-全连接神经网络手写数字手写识别
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】1.使用pytorch框架......
  • 识别视窗高度的工具函数
     获取滚动条当前的位置exportconstgetScrollTop=()=>{  varscrollTop=0;  if(document.documentElement&&document.documentElement.scrollTop){......