R语言逻辑回归、方差分析 、伪R平方分析
目录
怎么做测试
假设条件
并非所有比例或计数都适用于逻辑回归分析
过度分散
伪R平方
测试p值
Logistic回归示例
模型拟合
系数和指数系数
方差分析
伪R平方
模型的整体p值
标准化残差图
绘制模型
Logistic回归示例
模型拟合
系数和指数系数
方差分析
伪R平方
模型的整体p值
标准化残差图
绘制模型
Logistic回归示例
怎么做测试
Logistic回归可以使用glm (广义线性模型)函数在R中执行 。该函数使用链接函数来确定要使用哪种模型,例如逻辑模型,概率模型或泊松模型。
假设条件
广义线性模型的假设少于大多数常见的参数检验。观测值仍然需要独立,并且需要指定正确的链接函数。因此,例如应该了解何时使用泊松回归以及何时使用逻辑回归。但是,不需要数据或残差的正态分布。
并非所有比例或计数都适用于逻辑回归分析
一个不采用逻辑回归的例子中,饮食研究中人们减肥的体重无法用初始体重的比例来解释作为“成功”和“失败”的计数。在这里,只要满足模型假设,就可以使用常用的参数方法。
过度分散
使用广义线性模型时要注意的一个潜在问题是过度分散。当模型的残余偏差相对于残余自由度较高时,就会发生这种情况。这基本上表明该模型不能很好地拟合数据。
但是据我了解,从技术上讲,过度分散对于简单的逻辑回归而言不是问题,即具有二项式因果关系和单个连续自变量的问题。
伪R平方
对于广义线性模型(glm),R不产生r平方值。pscl 包中的 pR2 可以产生伪R平方值。
测试p值
检验逻辑对数或泊松回归的p值使用卡方检验。方差分析 来测试每一个系数的显着性。似然比检验也可以用来检验整体模型的重要性。
Logistic回归示例
Data = read.table(textConnection(Input),header=TRUE)
Data$Total = Data$mpi90 + Data$mpi100
Data$Percent = Data$mpi100 / + Data$Total
模型拟合
Trials = cbind(Data$mpi100, Data$mpi90) # Sucesses, Failures
model = glm(Trials ~ Latitude,
data = Data,
family = binomial(link="logit"))
系数和指数系数
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.64686 0.92487 -8.268 <2e-16 ***
Latitude 0.17864 0.02104 8.490 <2e-16 ***
2.5 % 97.5 %
(Intercept) -9.5003746 -5.8702453
Latitude 0.1382141 0.2208032
# exponentiated coefficients
(Intercept) Latitude
0.0004775391 1.1955899446
# 95% CI for exponentiated coefficients
2.5 % 97.5 %
(Intercept) 7.482379e-05 0.002822181
Latitude 1.148221e+00 1.247077992
方差分析
Analysis of Deviance Table (Type II tests)
Response: Trials
Df Chisq Pr(>Chisq)
Latitude 1 72.076 < 2.2e-16 ***
伪R平方
$Models
Model: "glm, Trials ~ Latitude, binomial(link = \"logit\"), Data"
Null: "glm, Trials ~ 1, binomial(link = \"logit\"), Data"
$Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared
McFadden 0.425248
Cox and Snell (ML) 0.999970
Nagelkerke (Cragg and Uhler) 0.999970
模型的整体p值
Analysis of Deviance Table
Model 1: Trials ~ Latitude
Model 2: Trials ~ 1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 6 70.333
2 7 153.633 -1 -83.301 < 2.2e-16 ***
Likelihood ratio test
Model 1: Trials ~ Latitude
Model 2: Trials ~ 1
#Df LogLik Df Chisq Pr(>Chisq)
1 2 -56.293
2 1 -97.944 -1 83.301 < 2.2e-16 ***
标准化残差图
标准化残差与预测值的关系图。残差应无偏且均等。
绘制模型
Logistic回归示例
Data = read.table(textConnection(Input),header=TRUE)
模型拟合
model
系数和指数系数
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.41379 6.66190 0.663 0.508
Height -0.05016 0.09577 -0.524 0.600
2.5 % 97.5 %
(Intercept) -8.4723648 18.4667731
Height -0.2498133 0.1374819
# exponentiated coefficients
(Intercept) Height
82.5821122 0.9510757
# 95% CI for exponentiated coefficients
2.5 % 97.5 %
(Intercept) 0.0002091697 1.047171e+08
Height 0.7789461738 1.147381e+0
方差分析
Analysis of Deviance Table (Type II tests)
Response: Insect
Df Chisq Pr(>Chisq)
Height 1 0.2743 0.6004
Residuals 23
伪R平方
$Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared
McFadden 0.00936978
Cox and Snell (ML) 0.01105020
Nagelkerke (Cragg and Uhler) 0.01591030
模型的整体p值
Analysis of Deviance Table
Model 1: Insect ~ Height
Model 2: Insect ~ 1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 23 29.370
2 24 29.648 -1 -0.27779 0.5982
Likelihood ratio test
Model 1: Insect ~ Height
Model 2: Insect ~ 1
#Df LogLik Df Chisq Pr(>Chisq)
1 2 -14.685
2 1 -14.824 -1 0.2778 0.5982
标准化残差图
绘制模型
Height Insect Insect.num
1 62 beetle 0
2 66 other 1
3 61 beetle 0
23 72 other 1
24 70 beetle 0
25 74 other 1
Height Insect Insect.num Insect.log
1 62 beetle 0 FALSE
2 66 other 1 TRUE
3 61 beetle 0 FALSE
23 72 other 1 TRUE
24 70 beetle 0 FALSE
25 74 other 1 TRUE
Logistic回归示例
Data = read.table(textConnection(Input),header=TRUE)
model
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -66.4981 32.3787 -2.054 0.0400 *
Continuous 0.9027 0.4389 2.056 0.0397 *
Analysis of Deviance Table (Type II tests)
Response: Factor
Df Chisq Pr(>Chisq)
Continuous 1 4.229 0.03974 *
Residuals 27
Pseudo.R.squared
McFadden 0.697579
Cox and Snell (ML) 0.619482
Nagelkerke (Cragg and Uhler) 0.826303
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 27 12.148
2 28 40.168 -1 -28.02 1.2e-07 ***
将因子转换为数字变量,级别为0和1
Continuous Factor Factor.num
1 62 A 0
2 63 A 0
3 64 A 0
27 84 B 1
28 85 B 1
29 86 B 1
将Factor转换为逻辑变量,级别为TRUE和FALSE
Continuous Factor Factor.num Factor.log
1 62 A 0 FALSE
2 63 A 0 FALSE
3 64 A 0 FALSE
27 84 B 1 TRUE
28 85 B 1 TRUE
29 86 B 1 TRUE
如果您有任何疑问,请在下面发表评论。
标签:Pr,Df,模型,tecdat,方差分析,Insect,Chisq,拓端,Data From: https://blog.51cto.com/u_14293657/5890354