首页 > 其他分享 >量子模拟

量子模拟

时间:2022-11-23 01:00:59浏览次数:71  
标签:psi 模拟 rho Delta ket sigma bra 量子

Pure state and mixed state

See here.

qPCA

Compute

\[ \operatorname{Tr}_{1} \left(e^{-iS\Delta t} \rho \otimes \sigma e^{iS\Delta t} \right) \]

where \(\rho\) and \(\sigma\) are two density matrix, \(S\) is the swap operator.

Note that \(e^{-iS\Delta t} = \cos (\Delta t) I_1 \otimes I_2 - i\sin(\Delta t) S\).

First considering that \(\rho\) and \(\sigma\) are density matrix of pure state, i.e, \(\rho = \ket{\psi_1} \bra{\psi_1}, \sigma = \ket{\psi_2} \bra{\psi_2}\),then

\[\begin{aligned} e^{-iS\Delta t} \ket{\psi_1} \ket{\psi_2} \end{aligned} = \cos (\Delta t)\ket{\psi_1} \ket{\psi_2} - i \sin(\Delta t) \ket{\psi_2} \ket{\psi_1}. \]

So we have

\[\begin{aligned} & e^{-iS\Delta t} \rho \otimes \sigma e^{iS\Delta t} \\ =& e^{-iS\Delta t} \ket{\psi_1} \ket{\psi_2} \cdot \bra{\psi_1} \bra{\psi_2} e^{iS\Delta t} \\ = & \left[\cos (\Delta t)\ket{\psi_1} \ket{\psi_2} - i \sin(\Delta t) \ket{\psi_2} \ket{\psi_1}\right] \\ \cdot & \left[ \cos (\Delta t)\bra{\psi_1} \bra{\psi_2} + i \sin(\Delta t) \bra{\psi_2} \bra{\psi_1} \right] \\ =& \cos^2 (\Delta t)\ket{\psi_1} \ket{\psi_2}\bra{\psi_1} \bra{\psi_2} + \sin^2(\Delta t)\ket{\psi_2} \ket{\psi_1} \bra{\psi_2} \bra{\psi_1} \\ &- i \sin(\Delta t)\cos (\Delta t)\left[ \ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2} - \ket{\psi_1} \ket{\psi_2} \bra{\psi_2} \bra{\psi_1} \right] \end{aligned} \]

Note that \(\ket{\psi_1} \ket{\psi_2}\bra{\psi_1} \bra{\psi_2} = \rho \otimes \sigma, \ket{\psi_2} \ket{\psi_1} \bra{\psi_2} \bra{\psi_1} = \sigma \otimes \rho\), so

\[ \operatorname{Tr}_{1}\ket{\psi_1} \ket{\psi_2}\bra{\psi_1} \bra{\psi_2} = \sigma, \operatorname{Tr}_{1} \ket{\psi_2} \ket{\psi_1} \bra{\psi_2} \bra{\psi_1} = \rho. \]

Now we consider \(\operatorname{Tr}_{2} \ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2}\). We have

\[\begin{aligned} \operatorname{Tr}_{1} \ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2} &= \sum_{j} \left( \bra{j}\otimes I \right)\ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2}\left( \ket{j}\otimes I \right) \\ &=\sum_{j} \ket{\psi_1}\bra{\psi_2} \otimes (\bra{j} \ket{\psi_2} \bra{\psi_1} \ket{j} ) \\ &= \braket{\psi_1 \mid \psi_2} \ket{\psi_1}\bra{\psi_2} \\ &= \rho\sigma \end{aligned} \]

Similarly, $ \operatorname{Tr}_{1} \ket{\psi_1} \ket{\psi_2}\bra{\psi_2} \bra{\psi_1} = \rho \sigma$. So we have

\[\begin{aligned} \operatorname{Tr}_{1} \left(e^{-iS\Delta t} \rho \otimes \sigma e^{iS\Delta t} \right) &= \cos^2 (\Delta t)\sigma + \sin^2(\Delta t)\rho - i \sin(\Delta t)\cos (\Delta t)\left[ \rho, \sigma \right] \\ &=\sigma-i \Delta t[\rho, \sigma]+O\left(\Delta t^2\right) \end{aligned} \]

标签:psi,模拟,rho,Delta,ket,sigma,bra,量子
From: https://www.cnblogs.com/linxiaoshu/p/16917023.html

相关文章

  • ABC 214D Sum of Maximum Weights(并查集模拟删边)
    ABC214DSumofMaximumWeights(并查集模拟删边)SumofMaximumWeights​ 给出有\(n\;(2\len\le1e5)\)个点的一棵树,定义\(f(x,y)\)表示从节点x到节点y的最短......
  • 第十四届蓝桥杯校内模拟赛第二期——Python
    第十四届蓝桥杯校内模拟赛第二期——Python目录第十四届蓝桥杯校内模拟赛第二期——Python第一题问题描述答案提交答案第二题问题描述答案提交答案第三题问题描述答案提交......
  • go模拟实现反向代理各种算法
    packageutiltypeHttpServerstruct{HoststringWeightint}typeLoadBalancestruct{Server[]*HttpServerCurrentIndexint}varMapWeight[]intfunc......
  • curl模拟delete/put/post/get请求
    curl-h来查看请求参数的含义 -v显示请求的信息 -X选项指定其它协议get:curl-v192.168.33.1:8080/girls/age/18post:curl-v192.168.33.1:8080/girls-d'ag......
  • C++初阶(list容器+模拟实现)
    list介绍list的本质是一个带头的双向循环链表。链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列......
  • 11.21 模拟赛题解
    \(\textdistance\)简要题意给定一棵\(n\)个结点的无根树,每条边有一个边权,询问以哪一个点作为根时,到其他所有节点的距离之和最大。距离的定义为到该点最短路径上的边权......
  • ### 52ed 2022/11/19 模拟赛总结37
    这次并没有认真打,但是有一些问题还是。。。真令人无语地暴露了出来反思本次暴力T2时,看到题目说运算过程全在无符号32位整数内,很高兴地冒死用了unsignedint,然后输入输......
  • 【408】模拟4
    t6RR的意思是左单旋转!!重点是“左”和“单”,转一次就好啦RL或LR才是转两次t13t14float类型比int类型要高低级转向高级t15浮点数基数越大,精度越低......
  • 第十四届蓝桥杯模拟赛第一期试题【Java解析】
    目录​​A二进制位数​​​​问题描述​​​​答案提交​​​​参考答案​​​​解析​​​​B晨跑​​​​问题描述​​​​答案提交​​​​参考答案​​​​解析​​​......
  • 模拟简单的计算机程序
    packagebase.method;importjava.util.Scanner;publicclassDemo6{publicstaticStringequal;publicstaticdoublerest;publicstaticdouble......