lspci |grep -i nvidia
查看nvidia设备,看到GPU
gcc --version
检查是否安装上gcc软件包
根据官方文档指示,pip install torch==1.13.1+cu117 -f https://download.pytorch.org/whl/torch_stable.html,pip install torchaudio==0.13.1+cu117 -f https://download.pytorch.org/whl/torch_stable.html, pip install torchvision==0.14.1+cu117 -f https://download.pytorch.org/whl/torch_stable.html
于是下载CUDA11.7
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb
sudo dpkg -i cuda-keyring*.deb
sudo apt-get update
sudo apt-get -y install cuda-11-7
到cudnn的历史归档下载页面,点击Download cuDNN v8.8.0 (February 7th, 2023), for CUDA 11.x的Local Installer for Linux x86_64 (Tar),解压并进入cudnn目录
sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
添加/usr/local/cuda/bin到PATH,/usr/local/cuda/lib64到LD_LIBRARY_PATH。nvcc -V
获取CUDA编译器信息
安装最新的tensorflow库,注意匹配好tensorflow和cuda的版本(看到tensorflow和cuda对照表第一行还在用cuda11.2,我以为这张表好久没更新了,结果第一行就是最新版的tensorflow的依赖情况,google的动作有点儿慢啊,cuda11都到8了)。我安装的tensorflow-2.11.0编译时使用了cudnn8.2和cuda11.2,刚好和我之前安装的cuda和cudnn的大版本相同,能用。 验证tensorflow能否调用CUDA:import tensorflow as tf;tf.test.gpu_device_name()
,打印出GTX1060的名字,参考自检测tensorflow是否可以使用GPU
验证pytorch能否调用CUDA:import torch;torch.__version__;torch.cuda.is_available()
,打印True,参考自Win10下配置Pytorch-GPU(CUDA10.1)
本文的上一版:ubuntu安装cuda、cudnn和nvidia-docker
拓展阅读(安装TensorRT):Win11基于WSL2安装CUDA、cuDNN和TensorRT
本文创建于2022.5.25/21.02,修改于2023.3.2/14.47
标签:torch,cudnn,cuda,2023,tensorflow,local,usr From: https://www.cnblogs.com/tellw/p/18090235