第六章学习笔记
信号和信号处理
本章讲述了信号和信号处理;介绍了信号和中断的统一处理,有助于从正确的角度看待信号;将信号视为进程中断, 将进程从正常执行转移到信号处理;解释了信号的来源,包括来自硬件、异常和其他进程的信号;然后举例说明了信号在Unix/Linux 中的常见用法;详细解释了 Unix/Linux 中的信号处理,包括信号类型、信号向景位、信号掩码位、进程 PROC 结构体中的信号处理程序以及信号处理步骤。
信号和中断
信号和中断
“中断”是从I/O设备或协处理器发送到CPU的外部请求,它将CPU从正常执行转移 到中断处理。与发送给CPU的中断请求一样,“信号”是发送给进程的请求,将进程从正常执行转移到中断处理。
-
“中断”是发送给“进程”的事件,它将“进程”从正常活动转移到其他活动,称为“中断处理”。“进程”可在完成“中断”处理后恢复正常活动。根据来源,中断可分为三类:
1.来自硬件的中断:终端、间隔定时器的“Ctrl+C”组合键等。
2.来自其他人的中断:kill(pid,SIG#), death_of_child等。
3.自己造成的中断:除以0、无效地址等。
- 进程的陷阱错误
每个进程中断都被转换为一个唯一ID号,发送给进程。与多种类的人员中断不同,我们始终可限制在一个进程中的中断的数量。Unix/Linux中的进程中断称为信号,编号为1到31。进程的PROC结构体中有对应每个信号的动作函数,进程可在收到信号后执行该动作函数。与人员类似,进程也可屏蔽某些类型的信号,以推迟处理。必要时,进程还可能会修改信号动作函数。
Unix/Linux信号示例
(1)按“Ctrl+C”组合键通常会导致当前运行的进程终止。“Ctr1+C”组合键会生成一个键盘硬件中断。键盘中断处理程序将“Ctrl+C”组合键转换为SIGINT(2)信号,发送给终端上的所有进程,并唤醒等待键盘输人的进程。在内核模式下,每个进程都要检查和处理未完成的信号。进程对大多数信号的默认操作是调用内核的kexit(exitValue)函数来终止。在Linux中,exitValue的低位字节是导致进程终止的信号编号。
(2)用户可使用nohup a.out &命令在后台运行一个程序。即使在用户退出后,进程仍将继续运行。nobup命令会使sh像往常一样复刻子进程来执行程序,但是子进程会忽略SIGHuP(1)信号。当用户退出时,sh会向与终端有关的所有进程发送一个SIGHUP信号。后台进程在接收到这一信号后,会忽略它并继续运行。为防止后台进程使用终端进行I/O,后台进程通常会断开与终端的连接(通过将其文件描述符0、1、2重定向到/dev/null),使其完全不受任何面向终端信号的影响。
(3) 用户可以使用sh命令killpid(orkill-s9pia)杀死该程。方法如下。执行杀死的进程向pid标识的目标进程发送一个SIGTERM ( 15 )信号,请求它死亡。目标进程将会遵从请求并终止。如果进程选择忽略SIGTERM信号,它可能拒绝死亡。
Unix/Linux中的信号处理
信号类型
Unix/Linux支持31种不同的信号,每种信号在 signal.h文件中都有定义:
信号的来源
-
来自硬件中断的信号:在执行过程中,一些硬件中断被转换为信号发送给进程硬件信号示例:
中断键(Ctrl+C),它产生一个SIGINT(2)信号。
间隔定时器,当他的时间到期时,会生成一个SIGALRM(14)、SIGTALRM(26)或SIGPROF(27)信号。
其他硬件错误,如总线错误、IO陷阱。 -
来自异常的信号:常见的陷阱信号有SIGFPE(8),表示浮点异常(除以0),最常见也是最可怕的时SIGSEGV(11),表示段错误等。
-
来自其他进程的信号:进程可以使用kill(pid,sig)系统调用向pid标识的目标进程发送信号。
信号处理函数
- 每个进程PROC 都有一个信号处理数组 int sig[32]。Sig[32]数组的每个条目都指定了如何处理相应的信号。此外,它还有一个信号MASK位向量,用来屏蔽相应的信号,
我们可以使用sigmask、sigsetmask、siggetmask、sigblock等函数来设置,清除和检查MASK位向量
信号处理步骤
-
当某进程处于内核模式时,会检查信号并处理未完成的信号。如果某信号有用户安装的捕捉函数,该进程会先清除信号,获取捕捉函数地址,对于大多数陷阱信号,则将已安装的捕捉函数重置为 DEFault。然后,它会在用户模式下返回,以执行捕捉函数,以这种方式篡改返回路径。当捕捉函数结束时,它会返回到最初的中断点,即它最后进入内核模式的地方。
-
重置用户安装的信号捕捉函数:用户安装的陷阱相关信号捕捉函数用于处理用户代码中的陷阱错误。由于捕捉函数也在用户模式下执行,因此可能会再次出现同样的错误。如果是这样,该进程最终会陷入无限循环,一直在用户模式和内核模式之间跳跃。为了防止这种情况,Unix 内核通常会在允许进程执行捕捉函数之前先将处理函数重置为 DEFault。这意味着用户安装的捕捉函数只对首次出现的信号有效。
-
信号和唤醒:在Unix/Linux,内核中有两种 SLEEP进程;深度休眠进程和浅度休眠进程。前一种进程不可中断,而后一种进程可由信号中断。如果某进程处于不可中断的SLEEP 状态,到达的信号(必须来自硬件中断或其他进程)不会唤醒进程。如果它处于可中断的SLEEP状态,到达的信号将会唤醒它。
信号与异常
Unix信号最初设计用于以下用途:
1.作为进程异常的统一处理方法;
2.让进城通过预先安装的信号捕捉函数用户模式下的程序错误;
3.在特殊情况下,它会让某一个进程通过信号杀死另一个进程。
Linux中的IPC
管道和FIFO
- 管道的主要用途是连接一对管道写进程和读进程。管道写进程可将数据写入管道,读进程可从管道中读取数据。管道控制机制要对管道读写操作进行同步控制。未命名管道供相关进程使用。命名管道是FIFO的,可供不相关进程使用。在 Linux中的管道
读取操作为同步和阻塞。如果管道仍有写进程但没有数据,读进程会进行等待。
信号
- 进程可使用 kill 系统调用向其他进程发送信号,其他进程使用信号捕捉函数处理信号。将信号用作IPC的一个主要缺点是信号只是用作通知,不含任何信息内容。
线程同步机制
- Linux 不区分进程和线程。在 Linux中,进程是共享某些公共资源的线程。如果是使用有共享地址空间的clone(系统调用创建的进程,它们可使用互斥量和条件变量通过共享内存进行同步通信。另外,常规进程可添加到共享内存,使它们可作为线程
苏格拉底挑战
信号和中断
信号处理
chatgpt
Linux信号
信号处理函数
代码
第六章学习笔记
信号和信号处理
本章讲述了信号和信号处理;介绍了信号和中断的统一处理,有助于从正确的角度看待信号;将信号视为进程中断, 将进程从正常执行转移到信号处理;解释了信号的来源,包括来自硬件、异常和其他进程的信号;然后举例说明了信号在Unix/Linux 中的常见用法;详细解释了 Unix/Linux 中的信号处理,包括信号类型、信号向景位、信号掩码位、进程 PROC 结构体中的信号处理程序以及信号处理步骤。
信号和中断
信号和中断
“中断”是从I/O设备或协处理器发送到CPU的外部请求,它将CPU从正常执行转移 到中断处理。与发送给CPU的中断请求一样,“信号”是发送给进程的请求,将进程从正常执行转移到中断处理。
-
“中断”是发送给“进程”的事件,它将“进程”从正常活动转移到其他活动,称为“中断处理”。“进程”可在完成“中断”处理后恢复正常活动。根据来源,中断可分为三类:
1.来自硬件的中断:终端、间隔定时器的“Ctrl+C”组合键等。
2.来自其他人的中断:kill(pid,SIG#), death_of_child等。
3.自己造成的中断:除以0、无效地址等。
- 进程的陷阱错误
每个进程中断都被转换为一个唯一ID号,发送给进程。与多种类的人员中断不同,我们始终可限制在一个进程中的中断的数量。Unix/Linux中的进程中断称为信号,编号为1到31。进程的PROC结构体中有对应每个信号的动作函数,进程可在收到信号后执行该动作函数。与人员类似,进程也可屏蔽某些类型的信号,以推迟处理。必要时,进程还可能会修改信号动作函数。
Unix/Linux信号示例
(1)按“Ctrl+C”组合键通常会导致当前运行的进程终止。“Ctr1+C”组合键会生成一个键盘硬件中断。键盘中断处理程序将“Ctrl+C”组合键转换为SIGINT(2)信号,发送给终端上的所有进程,并唤醒等待键盘输人的进程。在内核模式下,每个进程都要检查和处理未完成的信号。进程对大多数信号的默认操作是调用内核的kexit(exitValue)函数来终止。在Linux中,exitValue的低位字节是导致进程终止的信号编号。
(2)用户可使用nohup a.out &命令在后台运行一个程序。即使在用户退出后,进程仍将继续运行。nobup命令会使sh像往常一样复刻子进程来执行程序,但是子进程会忽略SIGHuP(1)信号。当用户退出时,sh会向与终端有关的所有进程发送一个SIGHUP信号。后台进程在接收到这一信号后,会忽略它并继续运行。为防止后台进程使用终端进行I/O,后台进程通常会断开与终端的连接(通过将其文件描述符0、1、2重定向到/dev/null),使其完全不受任何面向终端信号的影响。
(3) 用户可以使用sh命令killpid(orkill-s9pia)杀死该程。方法如下。执行杀死的进程向pid标识的目标进程发送一个SIGTERM ( 15 )信号,请求它死亡。目标进程将会遵从请求并终止。如果进程选择忽略SIGTERM信号,它可能拒绝死亡。
Unix/Linux中的信号处理
信号类型
Unix/Linux支持31种不同的信号,每种信号在 signal.h文件中都有定义:
信号的来源
-
来自硬件中断的信号:在执行过程中,一些硬件中断被转换为信号发送给进程硬件信号示例:
中断键(Ctrl+C),它产生一个SIGINT(2)信号。
间隔定时器,当他的时间到期时,会生成一个SIGALRM(14)、SIGTALRM(26)或SIGPROF(27)信号。
其他硬件错误,如总线错误、IO陷阱。 -
来自异常的信号:常见的陷阱信号有SIGFPE(8),表示浮点异常(除以0),最常见也是最可怕的时SIGSEGV(11),表示段错误等。
-
来自其他进程的信号:进程可以使用kill(pid,sig)系统调用向pid标识的目标进程发送信号。
信号处理函数
- 每个进程PROC 都有一个信号处理数组 int sig[32]。Sig[32]数组的每个条目都指定了如何处理相应的信号。此外,它还有一个信号MASK位向量,用来屏蔽相应的信号,
我们可以使用sigmask、sigsetmask、siggetmask、sigblock等函数来设置,清除和检查MASK位向量
信号处理步骤
-
当某进程处于内核模式时,会检查信号并处理未完成的信号。如果某信号有用户安装的捕捉函数,该进程会先清除信号,获取捕捉函数地址,对于大多数陷阱信号,则将已安装的捕捉函数重置为 DEFault。然后,它会在用户模式下返回,以执行捕捉函数,以这种方式篡改返回路径。当捕捉函数结束时,它会返回到最初的中断点,即它最后进入内核模式的地方。
-
重置用户安装的信号捕捉函数:用户安装的陷阱相关信号捕捉函数用于处理用户代码中的陷阱错误。由于捕捉函数也在用户模式下执行,因此可能会再次出现同样的错误。如果是这样,该进程最终会陷入无限循环,一直在用户模式和内核模式之间跳跃。为了防止这种情况,Unix 内核通常会在允许进程执行捕捉函数之前先将处理函数重置为 DEFault。这意味着用户安装的捕捉函数只对首次出现的信号有效。
-
信号和唤醒:在Unix/Linux,内核中有两种 SLEEP进程;深度休眠进程和浅度休眠进程。前一种进程不可中断,而后一种进程可由信号中断。如果某进程处于不可中断的SLEEP 状态,到达的信号(必须来自硬件中断或其他进程)不会唤醒进程。如果它处于可中断的SLEEP状态,到达的信号将会唤醒它。
信号与异常
Unix信号最初设计用于以下用途:
1.作为进程异常的统一处理方法;
2.让进城通过预先安装的信号捕捉函数用户模式下的程序错误;
3.在特殊情况下,它会让某一个进程通过信号杀死另一个进程。
Linux中的IPC
管道和FIFO
- 管道的主要用途是连接一对管道写进程和读进程。管道写进程可将数据写入管道,读进程可从管道中读取数据。管道控制机制要对管道读写操作进行同步控制。未命名管道供相关进程使用。命名管道是FIFO的,可供不相关进程使用。在 Linux中的管道
读取操作为同步和阻塞。如果管道仍有写进程但没有数据,读进程会进行等待。
信号
- 进程可使用 kill 系统调用向其他进程发送信号,其他进程使用信号捕捉函数处理信号。将信号用作IPC的一个主要缺点是信号只是用作通知,不含任何信息内容。
线程同步机制
- Linux 不区分进程和线程。在 Linux中,进程是共享某些公共资源的线程。如果是使用有共享地址空间的clone(系统调用创建的进程,它们可使用互斥量和条件变量通过共享内存进行同步通信。另外,常规进程可添加到共享内存,使它们可作为线程
苏格拉底挑战
信号和中断
信号处理
chatgpt
Linux信号
信号处理函数
代码