文章目录
- 一、题目
- 二、方法一:解题思路
- 三、方法一:代码解析
- 四、方法二:动态规划
- 五、方法二:代码解析
一、题目
给你一个字符串 s,找到 s 中最长的回文子串。
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd"
输出:"bb"
提示:
1 <= s.length <= 1000
s 仅由数字和英文字母组成
通过次数1,034,272提交次数2,821,398
二、方法一:解题思路
- 中心扩散法
心扩散法怎么去找回文串? - 从每一个位置出发,向两边扩散即可。遇到不是回文的时候结束。举个例子,str = acdbbdaastr=acdbbdaa 我们需要寻找从第一个 b(位置为 33)出发最长回文串为多少。怎么寻找?
- 首先往左寻找与当期位置相同的字符,直到遇到不相等为止。
- 然后往右寻找与当期位置相同的字符,直到遇到不相等为止。
- 最后左右双向扩散,直到左和右不相等。如下图所示:
三、方法一:代码解析
class Solution {
public String longestPalindrome(String s) {
if (s == null || s.length() == 0) {
return "";
}
// 保存起始位置,测试了用数组似乎能比全局变量稍快一点
int[] range = new int[2];
char[] str = s.toCharArray();
for (int i = 0; i < s.length(); i++) {
// 把回文看成中间的部分全是同一字符,左右部分相对称
// 找到下一个与当前字符不同的字符
i = findLongest(str, i, range);
}
return s.substring(range[0], range[1] + 1);
}
public static int findLongest(char[] str, int low, int[] range) {
// 查找中间部分
int high = low;
while (high < str.length - 1 && str[high + 1] == str[low]) {
high++;
}
// 定位中间部分的最后一个字符
int ans = high;
// 从中间向左右扩散
while (low > 0 && high < str.length - 1 && str[low - 1] == str[high + 1]) {
low--;
high++;
}
// 记录最大长度
if (high - low > range[1] - range[0]) {
range[0] = low;
range[1] = high;
}
return ans;
}
}
四、方法二:动态规划
五、方法二:代码解析
public class Solution {
public String longestPalindrome(String s) {
int len = s.length();
if (len < 2) {
return s;
}
int maxLen = 1;
int begin = 0;
// dp[i][j] 表示 s[i..j] 是否是回文串
boolean[][] dp = new boolean[len][len];
// 初始化:所有长度为 1 的子串都是回文串
for (int i = 0; i < len; i++) {
dp[i][i] = true;
}
char[] charArray = s.toCharArray();
// 递推开始
// 先枚举子串长度
for (int L = 2; L <= len; L++) {
// 枚举左边界,左边界的上限设置可以宽松一些
for (int i = 0; i < len; i++) {
// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
int j = L + i - 1;
// 如果右边界越界,就可以退出当前循环
if (j >= len) {
break;
}
if (charArray[i] != charArray[j]) {
dp[i][j] = false;
} else {
if (j - i < 3) {
dp[i][j] = true;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
}
// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
if (dp[i][j] && j - i + 1 > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substring(begin, begin + maxLen);
}
}
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/two-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。