首页 > 编程语言 >毕业设计:python股票推荐系统 数据分析可视化 协同过滤推荐算法 Django框架(源码+论文)✅

毕业设计:python股票推荐系统 数据分析可视化 协同过滤推荐算法 Django框架(源码+论文)✅

时间:2024-11-08 11:17:17浏览次数:3  
标签:python 股票 self 用户 源码 可视化 毕业设计 items train

毕业设计:python股票推荐系统 数据分析可视化 协同过滤推荐算法 Django框架(源码+论文)✅

1、项目介绍

技术栈: python 、django框架、requests、BeautifulSoup、协同过滤算法、Echarts可视化、HTML

登录注册界面:用户可以注册新账号并登录系统。
个人信息修改:用户可以修改个人信息,如用户名、密码等。
收藏、取消收藏:用户可以收藏感兴趣的股票,也可以取消收藏。
股票新闻爬取并展示:爬取股票相关新闻,并在系统中展示,让用户获取最新的市场资讯。
数据展示:展示股票相关数据,包括历史价格、成交量等。
所有股票可视化:对所有股票进行可视化展示,方便用户比较不同股票的走势。
单个证券具体展示:针对单个证券,提供饼图、折线图、柱状图、k线图等多种展示方式,帮助用户深入了解股票情况。
分类推荐:利用协同过滤算法实现股票分类推荐,为用户推荐符合其兴趣的股票。
后台管理功能:
数据爬取:使用requests和BeautifulSoup库爬取股票数据和新闻。
协同过滤算法:实现推荐系统的协同过滤算法,为用户提供个性化的股票推荐。

2、项目界面

(1)大盘股票K线图

在这里插入图片描述

(2)股票数据可视化分析

在这里插入图片描述
(3)股票资讯新闻
在这里插入图片描述
(4)股票推荐----协同过滤推荐算法

在这里插入图片描述

(5)股票信息
在这里插入图片描述

(6)股票价格信息
在这里插入图片描述
(7)股票可视化分析

在这里插入图片描述

(8)后台数据管理
在这里插入图片描述

3、项目说明

Python股票数据可视化和推荐系统的功能介绍:

用户功能:
登录注册界面:用户可以注册新账号并登录系统。
个人信息修改:用户可以修改个人信息,如用户名、密码等。
收藏、取消收藏:用户可以收藏感兴趣的股票,也可以取消收藏。
股票新闻爬取并展示:爬取股票相关新闻,并在系统中展示,让用户获取最新的市场资讯。
数据展示:展示股票相关数据,包括历史价格、成交量等。
所有股票可视化:对所有股票进行可视化展示,方便用户比较不同股票的走势。
单个证券具体展示:针对单个证券,提供饼图、折线图、柱状图、k线图等多种展示方式,帮助用户深入了解股票情况。
分类推荐:利用协同过滤算法实现股票分类推荐,为用户推荐符合其兴趣的股票。
后台管理功能:
数据爬取:使用requests和BeautifulSoup库爬取股票数据和新闻。
协同过滤算法:实现推荐系统的协同过滤算法,为用户提供个性化的股票推荐。

4、核心代码

#!/usr/bin/env python
#-*-coding:utf-8-*-

import math
import pdb

class ItemBasedCF:
    def __init__(self,train):
        self.train =  train
        
    # def readData(self):
    #     #读取文件,并生成用户-物品的评分表和测试集
    #     self.train = dict()
    #     #用户-物品的评分表
    #     for line in open(self.train_file):
    #         user,score,item = line.strip().split(",")
    #         self.train.setdefault(user,{})
    #         self.train[user][item] = int(float(score))

    def ItemSimilarity(self):
        #建立物品-物品的共现矩阵
        cooccur = dict()  #物品-物品的共现矩阵
        buy = dict()  #物品被多少个不同用户购买N
        for user,items in self.train.items():
            for i in items.keys():
                buy.setdefault(i,0)
                buy[i] += 1
                cooccur.setdefault(i,{})
                for j in items.keys():
                    if i == j : continue
                    cooccur[i].setdefault(j,0)
                    cooccur[i][j] += 1
        #计算相似度矩阵
        self.similar = dict()
        for i,related_items in cooccur.items():
            self.similar.setdefault(i,{})
            for j,cij in related_items.items():
                self.similar[i][j] = cij / (math.sqrt(buy[i] * buy[j]))
        return self.similar

    #给用户user推荐,前K个相关用户,前N个物品
    def Recommend(self,user,K=10,N=10):
        rank = dict()
        action_item = self.train[user]     
        #用户user产生过行为的item和评分
        for item,score in action_item.items():
            sortedItems = sorted(self.similar[item].items(),key=lambda x:x[1],reverse=True)[0:K]
            for j,wj in sortedItems:
                if j in action_item.keys():
                    continue
                rank.setdefault(j,0)
                rank[j] += score * wj
        return dict(sorted(rank.items(),key=lambda x:x[1],reverse=True)[0:N])
    
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455'运行运行

标签:python,股票,self,用户,源码,可视化,毕业设计,items,train
From: https://blog.csdn.net/biyesheji0006/article/details/143617895

相关文章