首页 > 编程语言 >多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型

多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型

时间:2024-11-03 22:48:39浏览次数:3  
标签:预测 BiLSTM CEEMDAN 模型 博客 麻雀 CSDN SSA

往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较

全是干货 | 数据集、学习资料、建模资源分享!

EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客

风速预测(一)数据集介绍和预处理_风速数据在哪里下载-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

单步预测-风速预测模型代码全家桶-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客

多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客

多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(四) Transformer-BiLSTM风速预测模型-CSDN博客

多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客

半天入门!锂电池剩余寿命预测(Python)-CSDN博客

超强预测模型:二次分解-组合预测-CSDN博客

多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型-CSDN博客

前言

本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-BiLSTM多特征变量序列预测模型,以提高时间序列数据的预测性能。

模型整体结构:数据集一共有天气、温度、湿度、气压、风速等九个变量,使用CEEMDAN算法对风速序列进行分解,然后合并所有的分量和原始数据集变量,形成一个加强的特征输入,通过滑动窗口制作数据集,利用多变量来预测风速。通过麻雀优化算法对SSA-BiLSTM模型进行优化,提取加强后的特征,然后再送入全连接层,实现高精度的预测模型。

风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理_垂直风速气象数据源-CSDN博客

 1 多特征变量数据集制作与预处理

1.1 导入数据

1.2 CEEMDAN分解

1.3 数据集制作与预处理

先合并原始数据变量和分解的分量,按照9:1划分训练集和测试集

制作数据集

3 麻雀优化算法

3.1 麻雀优化算法介绍

麻雀优化算法(Sparrow Search Algorithm,简称SSA)是一种基于自然界麻雀行为特点的优化算法,它模拟了麻雀在觅食、迁徙和社交等行为中的优化策略。该算法在解决多种优化问题方面展现出了良好的性能。

麻雀优化算法的基本思想是通过模拟麻雀的觅食行为,不断优化搜索空间中的解。算法的过程可以分为觅食行为、迁徙行为和社交行为三个阶段。

1. 觅食行为(Foraging Behavior):麻雀在觅食时会选择距离较近且具有较高适应度的食物源。在算法中,解空间中的每个个体被看作是一个食物源,具有适应度评价值。麻雀通过选择适应度较高的个体来寻找更优的解。

2. 迁徙行为(Migration Behavior):当麻雀在一个食物源周围搜索一段时间后,如果没有找到更优的解,它们会选择离开当前食物源,前往其他食物源继续寻找。在算法中,个体之间的位置信息会发生变化,以模拟麻雀的迁徙行为。

3. 社交行为(Social Behavior):麻雀在觅食时会通过与其他麻雀的交流来获取更多的信息,从而提高自己的觅食效率。在算法中,个体之间通过交换信息来改善自身的解,并且更新解空间中的最优解。

3.2 基于Python的麻雀优化算法实现

3.3 麻雀优化算法-超参数寻优过程

麻雀优化算法具有简单易实现、全局寻优能力和自适应性等特点,适用于解决组合优化问题。我们通过麻雀优化算法来进行SSA-BiLSTM模型的超参数寻优。

通过设置合适的种群规模和优化迭代次数,我们在给定的超参数范围内,搜索出最优的参数。

4 基于Pytorch的CEEMDAN + SSA-BiLSTM 预测模型

4.1 定义CEEMDAN + SSA-BiLSTM预测模型

注意:输入风速数据形状为 [64, 7, 23], batch_size=64,7代表序列长度(滑动窗口取值),  维度23维代表挑选的8个变量和15个分量的维度。

4.2 设置参数,训练模型

50个epoch,MSE 为0.002526,多变量特征CEEMDAN + SSA-BiLSTM预测效果良好,加入CEEMDAN分解后,多变量预测效果提升明显,性能优越,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以修改麻雀优化算法的种群规模和优化迭代次数;

  • 调整BiLSTM层数和每层维度数的参数搜索范围,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

4 模型评估与可视化

4.1 结果可视化

4.2 模型评估

5 代码、数据整理如下:

标签:预测,BiLSTM,CEEMDAN,模型,博客,麻雀,CSDN,SSA
From: https://blog.csdn.net/2402_85668383/article/details/143472482

相关文章

  • 冲一区!双重分解+粒子群优化+深度学习多元时序预测!CEEMDAN-Kmeans-VMD-PSO-Transformer
    目录效果一览基本介绍程序设计参考资料效果一览基本介绍1.Matlab实现CEEMDAN-Kmeans-VMD-PSO-Transformer融合K均值聚类的数据双重分解+粒子群优化+Transformer多元时间序列预测(完整源码和数据)运行环境Matlab2023b及以上。2.CEEMDAN分解,计算样本......
  • MessagePassing Interface MPI
    Assignment6DueWednesdayby11:59pmPoints80SubmittingafileuploadAvailableOct28at12pm-Dec31at11:59pmStartAssignmentAssignment6(80Points)DueNovember6at11:59PMInthisassignment,youwillcreatedistributedsolutions(i.e.,withmultip......
  • Python基于TensorFlow实现卷积神经网络-双向长短时记忆循环神经网络加注意力机制回归
    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后关注获取。1.项目背景随着大数据时代的到来,对复杂数据结构的理解和预测成为许多领域的重要课题。在这些领域中,无论是视频分析、语音识别还是自然语言处理,都面临着需......
  • MFC的SendMessage与PostMessage的区别
    一、SendMessage同步操作:SendMessage是一个同步函数,它会将消息发送到指定的窗口,并等待该窗口的消息处理过程完成,然后返回。这意味着它会阻塞当前线程,直到消息处理完成。直接调用:SendMessage会将消息直接传递给目标窗口的消息处理函数,因此消息处理函数在当前线程中执行......
  • CAN Specification 2.0 PART B -- CAN message 定义(1)
    记录BOSCHCANSpecification2.0PARTBCAN协议标准学习过程,以备需要时查看;BOSCHCANSpecification2.0 文档获取:http://esd.cs.ucr.edu/webres/can20.pdfCANmessage定义1.DATAFRAME数据帧DATAFRAME由StartofFrame,ArbitrationField,ControlField,Da......
  • 【Unity】Addressables下的图集(SpriteAtlas)内存优化
    前言:资源管理系统:AddressablesUI:模拟NGUI图集Sprite,在UGUI下继承Image增加UIImage组件,实现将SpriteAtlas组件拖拽到属性面板上,切换选择里面的小图问题:在检查项目内存占用过高问题时,发现直接拖拽上去的资源不受Addressables系统的自动引用管理,导致部分资源虽然没有引用,但是未被释放......
  • ISSA+CNN+BIGRU+attention时间序列预测代码
    1.ISSA(改进的麻雀优化算法)功能:ISSA用于优化模型参数(如CNN和BIGRU的超参数),帮助提高模型的性能和准确性。机制:寻食策略:模拟麻雀在觅食过程中如何探索和利用资源,通过随机游走和局部搜索,寻找最优解。自适应权重:ISSA可以根据搜索空间动态调整探索和利用的权重......
  • 微服务设计模式 - 大使模式(Ambassador Pattern)
    微服务设计模式-大使模式(AmbassadorPattern)微服务设计模式-大使模式(AmbassadorPattern)定义结构工作过程优点使用场景示例代码总结定义AmbassadorPattern是一种常见的微服务设计模式,通常用于在微服务架构中代理和处理外部服务调用。通过使用AmbassadorPatter......
  • 多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型
    往期精彩内容:时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较全是干货|数据集、学习资料、建模资源分享!EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(一)EMD-CSDN博客EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(二)EEMDEMD、EEM......
  • 轴承故障诊断 (12)基于交叉注意力特征融合的VMD+CNN-BiLSTM-CrossAttention故障识别模
    往期精彩内容:Python-凯斯西储大学(CWRU)轴承数据解读与分类处理Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客三十多个开源数据集|故障诊断再也不用担心数据集了!P......